簡易檢索 / 詳目顯示

研究生: 陳冠州
Guan-jhou Chen
論文名稱: 以PFC2D探討基礎加載之破壞演化
Study of the Failure Evolution of Rock subjected to Foundation Loading Using PFC2D
指導教授: 陳志南
Chee-Nan Chen
口試委員: 陳立憲
none
林志森
none
陳堯中
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 135
中文關鍵詞: PFC2D離散元素法裂縫演化
外文關鍵詞: Particle Flow Code in 2 Dimensions, Distinct Element Method, Failure Evolution
相關次數: 點閱:157下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用離散元素法之二維數值軟體PFC2D模擬岩盤承載之裂縫演化,首先探討顆粒微觀參數與整體材料巨觀參數間關連性之敏感度分析。再以三軸壓縮(含單軸壓縮)及巴西劈裂試驗之模擬,來檢核巨觀參數值,在可接受誤差範圍內即視對應之微觀參數為材料之參數,用以探討不同載重情況下之裂縫演化。
透過敏感度分析,發現顆粒元素數量大於4000顆時之巨觀材料參數值會趨於穩定。至於微觀參數與巨觀參數之關聯性,微觀參數之鍵結半徑放大係數對巨觀材料參數之影響最高,研究提出各微觀參數調整對各巨觀參數之高中低影響,作為微觀參數調整選擇之參考。
探討包含水平地表岩體承載(有、無鄰房)、傾斜地表岩盤承載等四種不同情況之基礎下方裂縫演化,及基礎下方周遭之最小主應力或圍壓狀況。當基礎有鄰近建築時,裂縫延伸較無鄰近建築少,且基礎下方之最小主應力隨著鄰房距離減小而增加。


The Numerical Software PFC2D is used to simulate crack evolution within the rock under various magnitude of foundation load in this study. The first part is to conduct the sensitivity analysis of eight microscopic parameters on six macroscopic material parameters. Triaxial compression test (including uniaxial compression) and the Brazilian test simulation were performed to verify the acceptable range of error of the macro parameter values.
Through sensitivity analysis, it is found that the macroscopic material parameter values will be stable if the number of particle elements is more than 4000. It also has been observed that the bonding radius magnification factor has the biggest influence on macroscopic material parameters. A sensitivity classification (high, medium, low) is made of eight microscopic parameters on six macroscopic parameter for the purpose of proceeding study.
The second part of this study includes the analysis and comparison of rock crack initiation and propagation beneath the foundation under various conditions, such as horizontal surface rock bearing (with/without addition of building structure) and the inclined rock surface. The minimum principal stress or confining pressure situation is also analyzed during the process. Some other findings from the study are, the influence of building structure in the model will make cracks to be less apparent than when there is no building structure nearby. Meanwhile, higher confining pressure will also be observed when the distance of the building structure is closer.

論文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 符號說明 第一章 緒 論 1.1研究動機及目的 1.2 研究方法與流程 1.3 論文內容 第二章 文獻回顧 2.1微觀與巨觀敏感度分析 2.1.1 微觀參數與巨觀參數影響 2.1.2 顆粒數之影響 2.1.3摩擦係數對巨觀之影響 2.2 完整岩石Mohr-Coulomb破壞準則 2.3等向性材料承載之應力傳遞 2.3.1集中荷重加載於下方均質材料之應力傳遞理論 2.3.2條型荷重承載於下方均質材料之應力傳遞理論 2.4 接觸應力與基礎沉陷理論 第三章 數值分析工具及模型建立 3.1 PFC程式概述 3.2 PFC2D 基本假設 3.3 運算原理 3.3.1 力-位移關係 3.3.2 運動方程式 3.4 PFC2D 之接觸組成模式介紹 3.4.1 接觸勁度模式(contact-stiffness model) 3.4.2 滑動模式(slip model) 3.4.3 連結模式(bonding models) 3.5 本研究顆粒變化模型及範圍與邊界之設置 3.5.1側邊界與底部邊界支撐設置 3.5.2 粒徑變化範圍設置 3.5.3 鄰房及邊坡位置設置 第四章 PFC2D輸入之微觀參數分析與評估過程 4.1 PFC2D微觀參數及欲模擬之岩體參數選取 4.1.1 初始微觀參數(m0)與目標巨觀參數(Mg)選取 4.1.2 利用首次選定之初始微觀參數(m0)由PFC2D分析出對應之巨觀參數(M0) 4.2 僅單一微觀參數(mi)調整對巨觀參數(Mi)之敏感度影響 4.2.1 單一調整各微觀參數(m0)對巨觀參數(Mi)之敏感影響探討 4.2.2 調整微觀參數(mi)對巨觀參數(Mi)之敏感度定性影響 4.3調整微觀參數(mi)對巨觀參數(Mi)敏感度之高中低影響結論 4.3.1巨觀參數得到之最大與最小調整值出入百分比I(%) 4.3.2 單一微觀參數(mi)調整對巨觀參數(Mi)之影響高、中、低定義與結論 4.4顆粒數變化對巨觀參數(Mi)之影響 4.4.1 選用之微觀參數值 4.4.2 顆粒數對巨觀影響探討 4.5 目標巨觀參數(Mg)與調整後巨觀參數(Mi)檢核 第五章 利用微觀參數探討基礎承載之下方岩盤裂縫發展 5.1 以PFC2D計算水平地表垂直覆土應力與檢核 5.2基礎承載之裂縫發展歷程探討 5.3鄰房離基礎不同距離對基礎下方岩盤之裂縫發展與圍壓變化探討 5.3.1 無鄰房狀況下之圍壓變化探討 5.3.2鄰房較遠離基礎(L=B/2)狀況下之圍壓探討 5.3.3鄰房較接近基礎(L=B/8)狀況下之圍壓探討 5.3.4 有鄰房與無鄰房之下方岩盤圍壓變化對比 第六章 結論與建議 6.2結論 6.2建議 參考文獻 附錄A-出入百分比I(%)計算值 附錄B-顆粒數參數折減前後之敏感度 附錄C-有、無鄰房於不同載重下裂縫演化過程

1. Boussinesq, J. (1885), “Villars Application des Potentials a L’Etude de L’Equilibre et du Mouvement des Solides Elastiqus”, Gauthier-Villars.
2. Camusso M. and Barla M., 2009, Microparameters Calibration for Loose and Cemented Soil When Using Particle Methods. international journal of geomechanics ASCE, p217-229
3. Cundall P. A. and Strack O. D. L., 1979, A Discrete Numerical Model for Granular Assemblies. Geotechnique, 29, 47-65
4. Das B.M, 2002. Principles of Geotechnical Engineering, Bro. Col., p259-261
5. Goodman R. E., 1989, Introduction to Rock Mechanics, 2nd Ed, Chap. 9, p348-352, John Wiley&Sons.
6. Hainbu ̈chner E., Potthoff S., Konietzky H., and te kamp L., 2003, Particle Based Modeling of Shear Box Test and Stability Problems for Shallow Foundations in Sand, Numerical Modeling in Micromechanics Via particle Methods, p151-156.
7. Itasca Consulting Group Inc, 2006, PFC2D (Particle Flow Code in 2 Dimensions), Version 3.1. Minneapolis, MN: USA.
8. Jurgenson, L.,”The Application of Theories of Elasticity and Plasticity to Foundation Problems,” in Contribution to Soil Mechanics, 1925-1940, Boston Society of Civil Engineers, Boston, (1934).
9. Potyondy D.O., Cundallb P.A., 2004, Abonded-particle Model for rock, International Journal of Rock Mechanics & Mining Sciences, 41 p.1329–1364
10. Taylor D.W., 1948, Foundamentals of Soil Mechanics, Wiley, New York.
11. Wanga C., Tannanta D.D., and Lillyb P.A., 2003. Numerical Analysis of the Stability of Heavily Jointed Rock Slopes Using PFC2D, International Journal of Rock Mechanics and Mining Sciences.
12. Wang J. F., Y. Li, and Yang Y., 2011, Electric Technology and Civil Engineering, International Conference of Electric Technology and Civil Engineering, p2420-2424
13. Yoon J., 2007, Application of Experimental Design and Optimization to PFC Model Calibration in Uniaxial Compression Simulation, International Journal of Rock Mechanics & Mining Sciences, 44, p871-889.

14. 廖慶隆,「顆粒材料分析模式及其應用簡介」,顆粒材料力學研習會研習資料,P33-57,台北,(1991)
15. 張家銓,「分離元素法於擬脆性岩材微觀破裂機制之初探」,碩士論文,國立台北科技大學,台北,(2007)
16. 林郁修,「分離元素法於岩石貫切破壞試驗之模擬分析」,碩士論文,國立台北科技大學,台北,(2007)。
17. 方彥鈞,「基礎載重下顆粒土壤變形之離散元素模擬」,碩士論文,國立雲林科技大學,雲林,(2007)。
18. 李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立臺灣大學土木工程研究所,台北,(2008)。
19. 吳曉琦,「利用數值模擬探討覆瓦狀構造的力學機制」,碩士論文,國立臺灣大學土木工程研究所,台北,(2008)。
20. 鄭承昌,「以分離元素法探討顆粒材料之極限承載力研究」碩士論文,國立高雄大學,高雄,(2008)。
21. 陳俐穎,「節理分布與傾角變化對基礎底面與其下方岩盤之應力與變形探討」,碩士論文,國立臺灣科技大學營建工程研究所,台北,(2008)。
22. 邱家吉等人,「以個別元素法模擬節理岩體單軸壓縮下之力學特性」,全國岩盤工程研討會,P271-280,高雄,(2010)

QR CODE