簡易檢索 / 詳目顯示

研究生: 陳政男
Cheng-Nan Chen
論文名稱: 施體及受體摻雜對鈦酸鉍鈉基非鉛壓電陶瓷電性及電域結構的影響
Effects of donor and acceptor dopants in BNT-based lead-free piezoceramic on electrical properties and domain structure
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 陳詩芸
none
陳怡君
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 99
中文關鍵詞: 非鉛壓電陶瓷鈦酸鉍鈉巨大應變奈米電域
外文關鍵詞: lead-free ceramic, BNT, giant strain, nano domain
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以氧化物法合成BNB6T,並以BNB6T為基材做施體及受體的B-site取代摻雜,摻雜三價Al及五價Ta及Nb以控制材料缺陷的方式提升電性表現。此外,以穿透式電子顯微鏡觀察異質摻雜所產生的缺陷對於電域的影響,期望找出BNB6T電場誘發應變的機制。
    結果顯示,BNB6T基材及1mol%、2mol%、3mol%異質摻雜的繞射圖形皆無其他雜相,為標準的鈣鈦礦結構,介於R相和T相之間,以R相為主。少量的異質摻雜即會顯著影響電阻率、介電常數、Td、Tm,及影響材料的相變行為。摻雜Al3+會在材料內部產生氧空缺和電洞使漏電流上升、電阻率下降,而摻雜Ta5+ 及Nb5+對電阻率的影響不明顯。在應變方面,施體及受體所以呈現的應變型式不同,施體為蝴蝶曲線,受體則為V曲線,在摻雜1%Nb時有應變最大值0.3%,較BNB6T提升約0.08%。
    使用穿透式電子顯微鏡觀察施體及受體摻雜對電域形貌的影響,發現BNB6T的電域形貌以奈米電域為主,有奈米電域團聚成core-shell的結構,而異質摻雜所產生的缺陷會影響電域形貌,摻雜Al3+使部分奈米電域聚集成長程電域,此種由氧空缺誘發的長程電域並不穩定,容易出現、消失或移動。另一方面摻雜Ta5+ 及Nb5+電域結構仍是以奈米電域為主。研究結果顯示材料內部空缺將對改變奈米電域的形貌,呈現出不同的電性表現。
    在TEM下觀察BNB6T及Donor摻雜的Ta5+ 、Nb5+,其奈米電域的繞射圖形下常可以觀察到特殊的繞射點拉長成一條直線的形狀效應,比對高解析中子XRD的文獻,可知線型繞射點由對稱結構P4bm及R3c的繞射點組成,但實際的排列方式仍然不明瞭,可能為此類非鉛材料展現大的電場誘發應變的原因,值得進一步深入研究。


    In this thesis, we synthesized lead-free piezo-ceramics BNT-6BT by a conventional oxide mixing fabrication process. Then we used BNT-6BT as a matrix doping acceptor and donor to replace B-site, the position of Titanium, to modify the microstructure and electrical properties. The elements we selected are Aluminum which is an acceptor dopant and Tantalum and Niobium which are donor dopants.
    In XRD investigation, all of the specimens show perovskite structure peaks mixing with R phase and T phase which reveal that they are still in the MPB region. The peaks are almost no shift in every specimen in which means there are no remarkable phase change.
    Although the phase is almost no change, B-site dopants have changed electrical properties remarkably. Aluminum doped BNB6T would decrease the resistivity and increase the Pr and Ec. The S-E curve showed a typical butterfly shape. Doped with Tantalum and Niobium would show similar effects on BNB6T. There is no remarkable change in resistivity in donor doping. The P-E curve would pinch seriously when doping with Tantalum and Niobium. The S-E curve of Tantalum and Niobium doping would show similar V shape. When we doped 1mol% Niobium, there is the maximum strain of 0.3% which is 0.08% higher than BNB6T.
    In TEM investigation, we find that the vacancies which are generated from acceptor or donor replacement would influence domain structure largely. Oxygen vacancies generated from Aluminum doped could let the nano domain transform into long range domain. On the other hand, Tantalum and Niobium dopants would show the same domain feature as BNB6T which is nano domain everywhere. In addition, we discover the diffraction pattern of nano domain would show special streaking spots at zone 310 revealing there are P4bm and R3c symmetries mixing in the matrix which generated the nano domain. This kind of mixing symmetries may be the reason of the giant strain in BNT-Based lead-free materials.

    目錄 I 圖目錄 IV 表目錄 VIII 摘要 IX Abstract XI 致謝 XIII 第一章 緒論 1 1-1研究背景 1 1-2研究方法 3 第二章 文獻回顧及理論基礎 5 2-1 無鉛壓電材料發展介紹 5 2-1-1 BaTiO3 (簡稱BT)系之無鉛壓電陶瓷材料 5 2-1-2 Bi0.5Na0.5TiO3(簡稱BNT)系之無鉛壓電陶瓷材料 6 2-1-3無鉛陶瓷的電場誘發應變機制 8 2-2固溶行為 11 2-2-1容忍因子 12 2-2-2異價取代 13 2-3介電特性 15 2-4電域 16 2-5奈米電域 17 2-6弛緩體 18 第三章 實驗製作與檢測方法 22 3-1原料 22 3-2材料合成 22 3-3 實驗流程 27 3-4 實驗分析 28 3-4-1熱分析儀 28 3-4-2 密度量測 28 3-4-3 X-ray繞射儀 29 3-4-4 鐵電遲滯曲線及應變曲線量測 29 3-4-5 介電量測 31 3-3-6 漏電流及電阻率量測 31 3-3-7 掃描式電子顯微鏡 32 3-3-8 場發射槍穿透式電子顯微鏡 32 第四章 結果與討論 33 4-1 容忍因子 33 4-2 材料形貌分析 34 4-3材料電性量測 43 4-3-1電阻率 43 4-3-2介電常數及介電損失 46 4-3-3極化曲線 56 4-3-4位移曲線 57 4-4 TEM微結構分析 62 第五章 結論 73 參考文獻 76

    1. Goyer RA, “Lead toxicity: current concerns.” Environmental Health Perspectives , 100, 177-87 (1993).
    2. Q. Xu, X. L. Chen, W. Chen, M. Chen, S. L. Xu, B. H. Kim, and J. H. Lee, “Effect of MnO addition on structure and electrical properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 ceramics prepared by citrate method”, Materials Science and Engineering B, 130, 94 (2006).
    3. T. Takenaka and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, Journal of the European Ceramic Society, 25, 2693 (2005).
    4. Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics, Journal of Applied Physics, 92, 1489 (2002).
    5. Y. Yuan, S. Zhang, X. Zhou, and J. Liu, Phase transition and temperature dependences of electrical properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics, Japanese Journal of Applied Physics, 45, 831 (2006).
    6. X. X. Wang, S. H. Choy, X. G. Tang, and H. L. W. Chan, Dielectric behavior and microstructure of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics, Journal of Applied Physics, 97, 1 (2005).
    7. Y. Hosono, K. Harada, and Y. Yamashita, Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3, Japanese Journal of Applied Physics, 40, 5722 (2001).
    8. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, “Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems”, Japanese Journal of Applied Physics, 38, 5564-5567 (1999).
    9. Y. Makiochi, R. Aoyagi, Y. Hiruma, H. Nagata, and T. Takenakd, “(Bi1/2Na1/2)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 Based Lead-Free Piezoelectric Ceramics”, Japanese Journal of Applied Physics, 44, 4350 (2005).
    10. T. Takenaka, K. I. Maruyama, and K. Sakata, “(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics”, Japanese Journal of Applied Physics, 30, 2236 (1991).
    11. M. Kimura, “A. Ando, T. Sawada, and K. Hayashi, Piezoelectric ceramic composition and piezoelectric ceramic device using the same”, U.S. Pat. , 6258291, (2001).
    12. T. Takenaka, M. Hirose, and K. Miyabe, Piezoelectric ceramic composition, U.S. Pat., 6004474, (1999).
    13. T. Takenaka,“Dielectric ceramic composition”, U.S. Pat., 5637542, (1997).
    14. M. Kimura, T. Ogawa, and A. Ando, Piezoelectric ceramic composition, U.S. Pat., 6093339, (2000).
    15. Murata Manufacturing Co., Ltd., Japan Pat., 56778, (2006).
    16. Murata Manufacturing Co., Ltd., Japan Pat., 3259677, (2005).
    17. TDK, Japan Pat., 2942535, (2005).
    18. TDK, Japan Pat., 082422, (2005).
    19. Taiyo Yuden, Japan Pat., 75449, (2004).
    20. Kyocera, Japan Pat., 34574, (2003).
    21. E. Cross, “Lead-free at last”, Nature, Vol. 432, 24 (2004).
    22. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead-free piezoceramics, Nature, Vol. 432, 84 (2004)
    23. H. D. Li, C. D. Feng, and W. L. Yao, "Some effects of different
    additives on dielectric and piezoelectric properties of(Bi1/2Na1/2)TiO3-BaTiO3 morphotropic phase boundary composition," Materials Letters, Vol. 58(7-8), pp. 1194-1198 (2004).
    24. G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N.
    Krainic, “New ferroelectric of complex composition,” Sov. Phys. Solid State 2, pp. 2651 (1961).
    25. H. Nagata, T. Shinya, Y. Hiruma, T. Takenaka, I. Sakaguchi, and H. Haneda, "Piezoelectric properties of bismuth sodium titanate ceramics," Ceramic Transactions, Vol. 167, pp. 213-221 (2005).
    26. C.W. Nelson, MIT Tech Rep. Lab Insulation Res., 179, (1963).
    27. K. Miura and M. Tanaka, "Origin of fatigue in ferroelectric perovskite oxides," Japanese Journal of Applied Physics, Vol. 35, pp. 2719-2725(1996).
    28. X. Wang, H. L. W. Chan, and C. L. Choy, “Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics,” Solid State Communications, Vol. 125(7-8), pp. 395-399 (2003).Vol. 125(7-8), pp. 395-399 (2003).
    29. B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, "Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics," Journal of the European Ceramic Society, Vol. 22, No. 13, pp. 2115-2121 (2002).
    30. H. Nagata, T. Shinya, Y. Hiruma, T. Takenaka, I. Sakaguchi, and H. Haneda, “Piezoelectric properties of bismuth sodium titanate
    ceramics” Ceramic Transactions, Vol. 167, pp. 213-221 (2005).
    31. Ruzhong Zuoa, Chun Ye, Xusheng Fang, Jinwang Li, Ruzhong Zuoa, Chun Ye, Xusheng Fang, Jinwang Li, "Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics"
    Journal of the European Ceramic Society, 28, 871–877 (2008).
    32. G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds” Sov. Phys., Solid State (Engl.Transl.), 1429-1437(1960).
    33. S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe, and J. Rodel, “Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 I. Structure and room temperature properties,” Journal of Applied Physics, 103, 034107 (2008).
    34. K. N. Pham, A. Hussain , C. W. Ahn, I. W. Kim, S. J. Jeong, J. S. Lee, “Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics” Materials Letters, 64, 2219 (2010).
    35. A. Hussain, C. W. Ahn, J. S. Lee, U. Aman, I. W. Kim, “Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5 TiO3 piezoelectric ceramics,” Sensors and Actuators A, 158, 84 (2010).
    36. A. M. Glazer, “Simple ways of determining perovskite structure,” Crystallographica, A31, 756 (1975).
    37. W. H. Lee, W. A. Groen, H. Schreinemacher and D. Hennings, “Dysprosium doped dielectric materials for sintering in reducing atmospheres,” Journal of Electroceramics, 31 (2000).
    38. Olaf Muller, “The Major Ternary Structural Families”, Springer-Verlag, Berlin, (1974).
    39. G. Arlt and P. Sasko, “Domain Configuration and Equilibrium Size of Domain in BaTiO3 Ceramics,” J. Appl. Phys., Vol. 51, pp. 4956-4960 (1980).
    40. M. Tanaka and G. Honjo, “Electron Optical Studies of Barium
    Titanate Single Crystal Film,” J. Phys. Soc. Jap., Vol. 19, pp. 954-970(1964).
    41. T. Mitsui, I. Tatsuzaki and E. Nakamura, “Introduction to Physics of Ferroelectrics,” Gorden and Breach, New York (1976).
    42. F. Jona and G. Shirane, “Ferroelectric Crystals,” Pergamon Press, New York (1962).
    43. N. Setter and L. E. Cross, “The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” Journal of Materials Science, 15, 2478 (1980).
    44. N. Setter and L. E. Cross, “The role of B-site cation disorder in diffusion phase transition behavior of perovskite ferroelectrics,” Journal of Applied Physics, 51, 4356 (1980)
    45. 梁兆宇,鈦酸鋇鈉基非鉛壓電陶瓷電場誘發應變行為研究,國立台灣科技大學機械工程系碩士論文,2010。
    46. Chu, F. Setter, N. ; Tagantsev, A. K. “The spontaneous relaxor‐ferroelectric transition of Pb(Sc0.5Ta0.5)O3” Journal of Applied Physics,71, 5129 - 5134 (1993)
    47. C. Ma, X. Tan, E. Dul'kin, M. Roth “Domain structure-dielectric property relationship in lead-free (1x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics” J. Appl. Phys, 108, 104105 (2010).
    48. Hugh Simons, John Daniels, Wook Jo, Robert Dittmer, Andrew Studer, “Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3” Journal of Applied Physics, 98, 082901 (2011)

    QR CODE