簡易檢索 / 詳目顯示

研究生: 呂正宗
Cheng-Tsung Lu
論文名稱: 水泥瀝青混凝土配比技術及在鋪面工程上應用之研究
The Cement-Asphalt Concrete Proportioning Design Technique and Its Utilization on Pavement
指導教授: 沈得縣
Der-Hsien Shen
口試委員: 黃兆龍
none
張大鵬
none
陳建旭
none
周家蓓
none
蘇南
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 244
中文關鍵詞: 水泥乳化瀝青強塑劑水泥瀝青膠漿水泥瀝青混凝土
外文關鍵詞: cement, emulsified asphalt, superplasticizer, cement asphalt mastic, cement asphalt concrete
相關次數: 點閱:277下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前在文獻或實務應用上,使用水泥改善乳化瀝青性質者,均採用水泥漿與乳化瀝青直接混合之方式,此種方式需額外加水使水泥或粒料溼潤後再與乳化瀝青混合。本研究之突破創新為:「不用事先加水溼潤水泥及粒料,只要使用強塑劑即可使水泥與乳化瀝青直接均勻地拌和」。此種處理技術不但可提高水泥與乳化瀝青拌和之均勻性,並可有效提升瀝青混凝土之力學性質。
    本研究以水泥作為瀝青之改質劑,將陽離子乳化瀝青及強塑劑先拌和均勻,再將水泥直接加入繼續拌和成水泥瀝青膠漿,然後取適量之水泥瀝青膠漿與級配粒料拌合,經夯打壓實而成水泥瀝青混凝土。本研究係針對水泥瀝青膠漿及水泥瀝青混凝土進行配比技術及各種性質之分析與探討,首先探討水泥瀝青膠漿組成材料之反應機理,然後進行水泥瀝青混凝土之配比設計,最後評估水泥瀝青混凝土在鋪面工程上應用之工程性質及鋪面績效。主要之研究結果如下:
    材料反應機理研究成果顯示,利用Zeta電位試驗確認「水泥瀝青膠漿」中強塑劑較佳之使用量為FSP/A=2%–5%之間。可由電位變化瞭解乳化瀝青與強塑劑拌和過程中絮凝產生之原因及強塑劑作為水泥與乳化瀝青拌和媒介之原理。研究結果顯示,水泥瀝青膠漿(CAM)拌製水泥瀝青混凝土(CAC)較適當之黏度為8000cPs至12000cPs。
    馬歇爾配比設計結果顯示,馬歇爾配比設計無法完全符合水泥瀝青混凝土配比設計所需,須以最低水泥瀝青膠漿需求量輔助進行配比設計。配比設計後之試體試驗所得結果為:水泥瀝青混凝土之水泥含量越高,力學性質越佳;強塑劑含量越高,新拌水泥瀝青混凝土工作性越佳。但此二者使用量均需限制,劑量太高易造成拌和失敗。本研究建議材料使用量範圍為:1.2≧C/A≧1;0.05≧FSP/A≧0.03;CAM/CAC=0.25;12000cPs≧CAM黏度≧8000cPs。
    力學性質之研究結果顯示,水泥瀝青混凝土相對於熱拌瀝青混凝土之改質成效:於28天壓力強度增強2.6-3.4倍;28天剪力強度增強5.4-6.5倍;28天張力強度增強6-8倍;28天馬歇爾穩定值增強6.2-7.9倍。因此水泥對乳化瀝青混凝土於力學性質上之改質效果卓越且顯著;但由流度值來看,又不失瀝青路面之柔性。
    鋪面績效評估結果顯示,水泥使瀝青混凝土抵抗浸水剝脫及凍融之性能均增強,滯留強度達80%-90%以上;抵抗車轍性質亦大為提升,於24小時齡期以後嚴苛之測試條件下幾無車轍。此性能績效除可保持鋪面完整性,維持鋪面之服務性能外,尚能延長鋪面使用壽年、降低維修成本及減少道路損壞對用路人安全之威脅。


    Nowadays, the application of cement to improve the property of emulsified asphalt, whether in theory or practice, has always involved the use of cement paste and emulsified asphalt mixture. However, this study decided to deviate from this convention because “additional water has to wet cement or aggregates before mixing emulsified asphalt.” Doing so prevents the emulsified asphalt and cement or the dry aggregates from directly mixing. In this regard, the current study can be considered a breakthrough and an innovative research because in the process employed, there is “no need to add prior water for wetting cement or aggregates so that concrete and emulsified asphalt can be mixed directly and evenly by superplasticizer." Such technology improves not only the uniformity when mixing cement and emulsified asphalt but also the mechanics strength of asphalt concrete.

    In this study, cement is used as modifier. Specifically, emulsified asphalt evenly mixes with FSP first and then directly mixes with cement to form cement-asphalt mastic (CAM). Afterwards, an adequate mixing ratio is ensured to combine CAM and the aggregate into cement-asphalt concrete (CAC) mixture. It is finally compacted as CAC. This research aims to analyze and estimate the proportion and mechanics property of both CAM and CAC. First, the composition and reaction mechanisms of CAM are investigated, followed by the proportion design of CAC. The study also elucidates the mechanics properties and paving performances of CAC as utilized on pavement. The following main results were generated.

    Research on the composition reaction mechanism of CAM has proven that the optimum dosage of a superplasticizer added to the CAM is FSP/A=2%-5%. This was confirmed in the study by conducting the Zeta potential test. Related potential changes also exhibited the causes behind the flocculation that resulted during the mixing process of emulsified asphalt and the superplasticizer. The principle behind the use of a superplasticizer as the media for the direct mixing of cement and emulsified asphalt was also determined. The results from this research indicated that cement-asphalt mastic is a mixture of cement-asphalt concrete whose viscosity is suitable for such application between 8000cPs and 12000cPs.

    In addition, the results of the Marshall Proportioning Design showed that the said design was unable to meet the proportional requirements of cement-asphalt concrete. Likewise, the minimum cement-asphalt mastic needed was used to support the proportional design required. After the related proportional design, trial conclusions stated that “the higher the content of cement in cement-asphalt concrete, the better the mechanical property, and the higher the content of superplasticizer, the nicer workability of the new mixture of cement and asphalt.” However, the amounts of cement and superplasticizer to be used have to be controlled because high-dose mixing may cause failure. The following quantity range of materials is suggested: 1.2≧C/A≧1; 0.05≧FSP/A≧0.03; CAM/CAC=0.25 and 12000cPs≧CAM Viscosity≧8000cPs.

    In terms of mechanical property, the research results showed that the modification of cement-asphalt concrete obtained better performance figures compared with those of hot-mixing asphalt concrete. These include increased pressure strength of 2.6-3.4 times that of 28 days, increased shear strength of 5.4-6.5 times that of 28 days, increased tension strength of 6-8 times that of 28 days, and enhanced Marshall Stability value of up to 6.2-7.9 times. Furthermore, its durability and resistance against rutting were enhanced. Therefore, concrete mixed with cement-emulsified asphalt concrete is characterized by excellent and significant mechanical property modification, as well as flow value that retains asphalt concrete pavement softness.

    The estimated results of paving performance are presented in this study, including cement enhances CAC immersing resistance and residual strength index. The residual strength index of CAC reached 80%-90% and the CAC rut showed evident decline. At a 24-hour period of CAC, its rut is near to none. Therefore, the paving performance of CAC offers several advantages. Among them are excellent pavement service, prolonged pavement use, reduced paving maintenance cost, and pavement damage prevention, which could avoid potential danger to road users.

    中文摘要Ⅰ 英文摘要Ⅳ 誌謝Ⅶ 目錄Ⅷ 表目錄XⅡ 圖目錄XⅣ 符號及專有名詞說明X X 第一章 緒論1 1.1 研究動機1 1.2 研究目的2 1.3 研究範圍與方法2 1.4 研究步驟與流程3 第二章 文獻回顧8 2.1 改質瀝青8 2.1.1 改質瀝青之演進及發展8 2.1.2 改質瀝青分類9 2.1.3 改質瀝青之標準12 2.1.4 改質瀝青之應用13 2.2 乳化瀝青16 2.3 水泥與乳化瀝青20 2.4 水泥與乳化瀝青混合之巨觀現象24 2.5 水泥與乳化瀝青混合之微觀現象26 2.6 Zeta電位與水泥瀝青膠漿之穩定性26 2.6.1 電雙層現象與理論26 2.6.2 Zeta電位(界面動電位) 28 2.6.3 DLVO理論30 2.7 乳化瀝青添加強塑劑對雙層電位之影響30 2.8 黏度與水泥瀝青膠漿穩定性之關係32 2.8.1 流變與黏度32 2.8.2 懸浮液流變學數學模式之概述36 2.8.3 黏度與膠體之穩定性37 2.9 水泥改質瀝青混凝土39 2.9.1 泡沫瀝青混凝土40 2.9.2 稀漿封層及CA砂漿41 2.9.2.1 稀漿封層41 2.9.2.2 CA砂漿42 2.9.3 半たわみ(變形、撓度)鋪裝施工法43 2.9.4 半剛性瀝青混凝土45 2.9.5 水泥乳化瀝青混凝土46 第三章 試驗材料與試驗計劃80 3.1 試驗材料80 3.2 試驗變數及內容80 3.2.1 水泥瀝青膠漿配比及試驗內容80 3.2.2 水泥瀝青混凝土配比及試驗內容80 3.3 乳化瀝青物性試驗81 3.3.1 蒸發殘餘量試驗81 3.3.2 儲存穩定性試驗81 3.3.3 荷電試驗81 3.3.4 靜置分離試驗81 3.4 瀝青膠泥物性試驗81 3.4.1 針入度試驗81 3.4.2 黏滯度試驗81 3.4.3 軟化點試驗82 3.5 水泥物性試驗82 3.5.1 水泥比重試驗82 3.5.2 水泥凝結時間試驗82 3.6 粒料物性試驗82 3.6.1 比重試驗82 3.6.2 洛杉磯磨損試驗82 3.6.3 健性試驗82 3.6.4 吸水率試驗82 3.7 馬歇爾配合設計法83 3.8 水泥瀝青膠漿材料組成之決定方法83 3.8.1 CAM之拌和程序83 3.8.2 CAM配比之決定83 3.9 決定CAC較佳CAM含量之方法84 3.10 力學性質試驗85 3.10.1 馬歇爾穩定值及流度值試驗85 3.10.2 抗壓強度試驗85 3.10.3 間接張力強度試驗85 3.10.4 直接剪力強度試驗85 3.10.5 回彈模數試驗86 3.11 耐久性試驗86 3.11.1 浸水剝脫試驗86 3.11.2 車轍輪跡試驗87 3.12 體積穩定性試驗90 3.12.1 CAM收縮量試驗90 3.12.2 CAC收縮量試驗90 第四章 試驗結果分析與討論93 4.1 組成材料物性試驗結果93 4.1.1 乳化瀝青93 4.1.2 水泥94 4.1.3 粒料95 4.1.4 瀝青96 4.1.5 強塑劑(FSP)97 4.2 水泥瀝青膠漿組成材料之反應機理100 4.2.1 水泥瀝青膠漿組成材料與界達電位之關係100 4.2.2 乳化瀝青摻加強塑劑對界達電位之影響102 4.2.3 乳化瀝青摻加強塑劑及增黏劑對界達電位之影響104 4.2.4 乳化瀝青摻加強塑劑及氯化鈣對界達電位之影響104 4.2.5 界達電位與破乳105 4.2.6 CAM材料結構微觀觀察108 4.3 水泥瀝青膠漿之配比及新拌性質118 4.3.1 水泥瀝青膠漿之新拌性質118 4.3.2 水泥瀝青膠漿之黏度121 4.3.3 坍流度122 4.3.4 凝結時間123 4.3.5 材料析離趨勢124 4.3.6 乾縮量127 4.4 水泥瀝青膠漿之配比及力學性質145 4.4.1 水泥瀝青膠漿之力學性質145 4.4.2 抗壓強度145 4.4.3 間接張力強度146 4.4.4 抗剪強度146 4.5 水泥瀝青混凝土之配比設計152 4.5.1 CAM材料組成使用量之決定152 4.5.2 CAC較佳CAM含量決定之配比設計153 4.5.3 HMA馬歇爾配比設計156 4.6 水泥瀝青混凝土配比及力學性質170 4.6.1 水泥瀝青混凝土之力學性質170 4.6.2 壓力強度170 4.6.3 剪力強度172 4.6.4 張力強度173 4.6.5 馬歇爾穩定值175 4.6.6 回彈模數(Mr值)176 4.7 水泥瀝青膠漿與水泥瀝青混凝土力學強度之比較194 4.7.1 CAM與CAC壓力試驗之結果194 4.7.2 CAM與CAC張力試驗之結果195 4.7.3 CAM與CAC剪力試驗之結果197 4.8 水泥瀝青混凝土體積穩定性202 4.9 水泥瀝青混凝土鋪面績效之評估205 4.9.1 浸水剝脫試驗–加速浸水剝脫馬歇爾試驗205 4.9.2 浸水剝脫試驗–凍融循環加速剝脫間接張力試驗206 4.9.3 車轍試驗206 第五章 結論與建議222 5.1 結論222 5.2 建議225 參考文獻227 作者簡介240

    1.張肖寧,「瀝青與瀝青混合料的黏彈力學原理及應用」,北京,人民交通出版社,2006。
    2.張肖寧,「實驗黏彈原理」,哈爾濱,哈爾濱船舶工程學院出版社,1991。
    3.田小革、應榮華、鄭健龍,「瀝青混凝土溫度應力試驗及其數值模擬」,土木工程學報,35(3),2002。
    4.Shuler, T.S., Collins, J.H., and Kirkpatrick, J.P., “Polymer-Modified Asphalt Properties Related to Asphalt Concrete Performance”, American Society for Testing and Materials (ASTM) STP 941, pp179-193(1987).
    5.King, G.N., King, H.W., Harders, O., Chavenot, P., and Planche, J.P., “Influence of Asphalt Grade and Polymer Concentration on the High Temperature Performance of Polymer Modified Asphalt”, Journal of the Association of Asphalt Paving Technologists, Vol.61, pp.29-61(1992).
    6.沈得縣、呂正宗,「半剛性瀝青混凝土配比及耐久性之研究」,2004海峽兩岸鋪面工程研討會,2004。
    7.呂正宗,「半剛性瀝青混凝土配比與性質之研究」,國立台灣工業技術學院營建工程技術研究所碩士論文,1996。
    8.王曉明,王培銘,「聚合物乾粉對水泥砂漿凝結時間之影響」,新型建築材料,2005(3):51-53,2005。
    9.Gadallah, A. A., Wood, L. E., Yoder, E. J., “Effect of Portland Cement on Certain Characteristics of Asphalt-Emulsion-Treated Mixtures,” TRR712, pp.23-30(1979).
    10.Holleran, G.. M. and Gnanasseelan, G.. P., Properties of Polymer Modified Binders and Relationship to Mix and Pavement Performance, AAPT95(1995).
    11.楊軍,「聚合物改性瀝青」,化學工業出版社,北京,2007。
    12.謝應得,「改質瀝青之製作及運用」,中國土木水利工程學會會刊,Vol.27(1), pp.19-26,2000。
    13.沈金安,「改性瀝青與SMA路面」,北京,人民交通出版社,2001。
    14.姜榮彬,「改質柏油的摻配與應用簡介」,中國土木水利工程學會會刊,Vol.27(1), pp.46-57,2000。
    15.CNS 14184
    16.AASHTO-AGC-ARTBA Joint Committee Subcommittee., New Highway Materials Task Force 31 Report –Guide Specifications Polymer Modified Asphalt(1995).
    17.瀝青應用技術專集,「橡膠、熱塑性樹脂、熱塑性橡膠改性瀝青」,アスフアルト,1997(191):65(1997)。
    18.Japan Modified Asphalt Association Standard (JMMAS)
    19.日本改性瀝青協會,「改質アスフアルト」,1994(1)-1998(8)。
    20.中華人民共和國交通行業標準,「公路改性瀝青路面施工技術規範(JTJ036-98)」,北京,人民交通出版社,1999。
    20.劉中林、田文、史建方、譚發茂,「高等級公路瀝青混凝土路面新技術」,北京,人民交通出版社,2004。
    21.沈得縣、呂正宗,「營建回收資源再利用於透水性瀝青鋪面之研究」,透水性材料特性及鋪面成效評估研討會,2004。
    22.吳佳銘,「多孔隙瀝青混凝土應用於道路面層工程性質之研究」,淡江大學土木工程研究所,2004。
    23.鄭光炎、鄭向高,「透水性鋪面」,綠營建工程研討會,2002。
    24.黃兆龍、沈得縣、林平全、李維峰,「多元性營建資源再利用於透水性組合設計之研究」,行政院公共工程委員會,2003。
    25.俞肇球、吳學禮、方克立、徐碧秀,「生態工程之透水性鋪面」,鋪面工程,第3卷第2期,pp.1-20,2005。
    26.日本道路學會,「排水性鋪裝技術指針(案)」,1998。
    27.劉明仁,「排水性鋪面設計觀念、排水效果、結構強度改良」,鋪面排水與行車安全研討會,pp.81-100,1999。
    28.蔡攀熬,「簡介排水性鋪面設計及施工」,鋪面排水與行車安全研討會,pp.1-9,1999。
    29.Saint, A., “Advantages of Asphalt Rubber Binder for Porous Asphalt Concrete,” TRR 1265, pp.69-81(1990).
    30.Bucka, M. P., “Asphalt Rubber Overlay Noise Study Update,” County of Sacramento public Works Agency Department of Transportation (2002).
    31.Camomilla, G., M. Malgarini. and S. Gervasio., “Sound absorption and winter performance of porous asphalt pavement,” Transportation Research Record, No.1265, pp.1-8(1990).
    32.沈得縣、徐茂濱、劉明仁,「國道路面行車噪音減輕對策之研究(第一期)」,交通部台灣區國道新建工程局,2005。
    33.沙慶林,「多碎石瀝青混凝土SAC系列的設計與施工」,北京,人民交通出版社,2005。
    34.許阿明、張春貴、周宗裕,「關渡大橋鋪面破壞狀況及維修策略探討」,台灣公路工程 第三十一卷第四期,第13-29頁,民國九十三年十月。
    35.楊金澤、邱垂德,「鋼床鈑鋪面材料特性研究」,台灣營建研究院。
    36.夏如鶯,「化妝品乳化劑之乳化效力之探討」,嘉南藥理科技大學化妝品科技研究所碩士論文,2006。
    37.王鳳英,「界面活性劑的原理與應用」,高立圖書有限公司,台灣台北,1988。
    38.賴耿陽,「界面活性劑應用實務」,復漢出版社,台灣台南,1983。
    39.范傳斌、羅煉,「摻水泥瀝青混凝土黏附性及工程實踐」,廣東公路交通,第82期,2004。
    40.李國強、黃衛、鄧學鈞,「水泥-乳化瀝青複合路面材料的研究」,矽酸岩學報,第四期,1998。
    41.Schmidt, R. J., Santucci, L. E., and Coyne, L. D., “Performance characteristics of cement-modified asphalt emulsion mixs,” Process of AAPT, Vol. 42, Michigan USA, pp.300-319(1973).
    42.Nakamory, Y., and Ito, T., “In place base recycleing with cement asphalt emulsion stabilization,” Singapore, Process of 2nd ICPT, Vol. 2, pp.802-810(2003).
    43.李江、封晨輝、陳忠達,「水泥-乳化瀝青混合料的研究」,石油瀝青,第19卷第6期,2005。
    44.歐靜枝,「乳化溶化技術實務」,台灣台南市,復漢出版社,1992。
    45趙承琛,「界面科學特論」,台灣台南市,復文書局,1988。
    46賴耿陽,「印染色湖調液法」,台灣台南市,復漢出版社,1989。
    47趙承琛,「界面科學基礎」,台灣台南市,復文書局,1994。
    48趙承琛,「工業升級之特用化學品-界面活性劑」,台灣台南市,復文書局,1993。
    49.胡德,「高分子物理與機械性質」,台北市,渤海堂文化公司,1990。
    50.陳瑞祥,「懸浮液之凝聚、分散及其流變性質之研究」,國立成功大學化工系碩士論文,1993。
    51.賴耿陽,「工業分散技術」,台灣台南市,復漢出版社,1994。
    52.王宏志,「高分子融體剪切與拉伸黏彈性質之研究」,國立台灣工業技術學院化工系碩士論文,1995。
    53.邱垂德、黃明詠、呂理成、馮文、A. J. N. Lewis,「泡沫瀝青在臺灣之應用研究」,香港商維特根有限公司臺灣分公司,2002。
    54.邱垂德、黃明詠、A. J. N. Lewis, 「泡沫瀝青冷拌再生混合料之性質研究」,鋪面工程,第一卷第二期,第1~17頁,民國91年4月。
    55.Robert, L. and McHattie, P.E., “Asphalt Surface Treatment Guide,” Research and Technology Transfer, State of Alaska, Alaska Dept. of Transportation and Public Facilities, U.S.A.(2001).
    56.Slurry seal pavement maintenance, international slurry surfacing association.
    57.日本國有鐵道版研究會「スラブ軌道之設計施工」,日本鐵道設施協會。
    58. Fundamentals of Slab Track in Japan, Track Material Menufactures Group in Japan (1991).
    59.王其昌、韓啟孟,「版式軌道設計與施工」,中國成都,西南交通大學出版社,2002。
    60.鄭國雄、張思,「軌道工程」,台北,大中國圖書公司,1999。
    61.黃民仁,「新世紀鐵路工程學」,台北,文笙書局,2005。
    62.范俊杰,「現代鐵路軌道」,中國北京,中國鐵道出版社,2001。
    63.黃民仁、陳世芳,「鐵路工程學」,台北,文笙書局,1993。
    64. http://blog.livedoor.jp/phanos/archives/50722621.html
    65. http://www.netcoms.co.jp/
    66. http://www.nipponroad.co.jp/lineup/asphalt/010.htm
    67. http://www.tokyohoso.co.jp/technical/002.html
    68. http://www.skr.mlit.go.jp/yongi/singijyutu/top/0402t01/t01_04.html
    69. http://www.mmc.co.jp/
    70. 沈得縣,呂正宗,「半剛性瀝青混凝土力學性質之研究」,第十一屆鋪面工程研討會論文集,高雄市台灣,2001。
    71. 沈得縣,呂正宗,「半剛性瀝青混凝土工程性質之研究」,鋪面工程,第一卷第二期,2002。
    72. Jennifer, K., “Investigation in to the stability of bitumen emulsions,” E1445 thesis and seminars department of chemical engineering(1999).
    73.郝培文,「瀝青路面施工與維護技術」,中國北京,人民交通出版社,2001。
    74.湯甦野,「” 熵”一個世紀之謎的解析」,中國北京,中國科學技術大學出版社,2004。
    75.林仁益,「石膏含量對水泥漿體微觀結構之影響」,國立台灣工業技術學院營建工程技術研究所碩士論文,1985。
    76.郭文田,「添加強塑劑對水泥材料水化及其早期行為之影響」,國立中央大學土木工程研究所博士論文,2000。
    77.Ramachandran, V. S. and Feldman, R. F., “Superplasticizers,” in Concrete Admixture Handbook, Ramachandran, V. S. Edt., Noyes, New Jersey (1984).
    78.Watanabe Kainen, Tottori Seiichi, and Harada Yutaka., “Experimental study for improvement of cement-asphalt compound materials for slab track to make them fit for cold climate use. In: Doboku Gakkai Rombun Hokokushu,” Proceedings of the Japan Society of Civil Engineers, p.205-214(1989).
    79.Oruc, S., Celik, F. and Akpinar, M. V., “Effect of cement on emulsified asphalt mixtures”, Journal of Materials Engineering and Performance, 16(5), pp.578-583(2007).
    80.Li, G., Zhao, Y., Pang, S. S., Huang, W., “Experimental study of cement-asphalt emulsion composite,” Cement and Concrete Research, 28(5), pp.635-641(1998).
    81.Brown, S. F., and Needham, D. A., “Study of Cement Modified Bitumen Emulsion Mixtures,” Proceedings of the Association of Asphalt Paving Technologists, pp.92-121(2000).
    82.Taha, R., Al-Rawas, A., Al-Harthy, A. and Qatan, A., “Use of cement bypass dust as filler in asphalt concrete mixtures,” Journal of Materials in Civil Engineering, 14(4), pp.338-343(2002).
    83.Aljassar, A. H., Metwali, S. and Ali, M. A., “Effect of filler types on Marshall stability and retained strength of asphalt concrete” International Journal of Pavement Engineering, 5(1), pp.47-51(2004).
    84.Akili Waddah., “Effect of moisture on laboratory-prepared asphalt mixtures,” Journal of Testing and Evaluation, 21(1), pp.73-83(1993).
    85.Li, G., Zhao. Y., Pang, S. S. and Huang, W., “Experimental Study of Cement-Asphalt Emulsion Composite,” Cement and Concrete Research, 28(5), pp.635-641(1998).
    86.Cavallo, J. L. and Chang, D L. “Emulsion Preparation and Stability,” Chemical Engineering Progress, 86(6), pp.54-59(1990).
    87.Al-Sabagh, A. M., Zaki, N. N. and Badawi, A. –F. M., “Effect of Binary Surfactant Mixtures on the Stability of Asphalt Emulsions,” J. Chem. Tech. Biotechnol, 69, pp.350-356(1997).
    88.Chen Zong Qi, Wang Guang Xin and Xu Gui Ying, Colloid and Interface Chemistry, Higher education press, Bei-Jing city(2003).
    89.Nagele, E., “Correlation Between Zeta Potential and Mechanical Properties for Cementitious Materials,” Cement and Concrete Research, Vol.21, No.4, pp.478-483(1991).
    90.Daimon, M., and Roy, D. M., “Rheological Properties of Cement Mixes: II. Zeta Potential and Preliminary Viscosity Studies,” Cement and Concrete Research, Vol. 9, No. 1, pp. 103-110 (1979).
    91.Chibowski, S., Paszkiewicz, M. and Krupa, M., “Investigation of the influence of the polyvinyl alcohol adsorption on the electrical properties of Al2O3 –solution interface,” thickness of the adsorption layers of PVA Powder Technology, 107, pp.251–255(2000).
    92.Rosen, M. J., Surfactants and Interfacial Phenomena, John Wiley and Sons, New York(1978).
    93. Ayao Kitahara and Akira Watanabe, Electrical Phenomena at Interfaces, Marcel Dekker Inc, Japan, pp.207-219(1984).
    94.Ichikawa, T., “Electrical demulsification of oil-in-water emulsion,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), pp.581-586(2007).
    95.Spitzer, J. J., “Colloidal interactions: Contact limiting laws, double-layer dissociation, and "non-DLVO" (Derjaguin-Landau- Verwey-Overbeek) forces,” Colloid and Polymer Science, 281(6), pp.589-592(2003).
    96.Ulman, A., An Introduction to Ultrathin Organic Films, Academic Press, New York(1991).
    97.Lahalih Shawqui M., Absi-Halabi M. and Ali Ali M., “Effect of Polymerization Conditions of Sulfonated-Melamine Formaldehyde Superplasticizers on Concrete,” Cement and Concrete Research, 18(4) pp.513-531(1988).
    98.Mollah, M. Y. A., Adams, W. J., Schennach, R. and Cocke, D. L., “Review of Cement-Superplasticizer Interactions and Their Models,” Advances in Cement Research, 12(4), pp.153-161(2000).
    99.Plank, J. and Hirsch, C., “Impact of zeta potential of early cement hydration phases on superplasticizer adsorption,” Cement and Concrete Research, 37(4), pp.537-542(2007).
    100.Yoshioka, K., Tazawa, E. –I., Kawai, K. and Enohata, T., “Adsorption Characteristics of Superplasticizers on Cement Component Minerals, ”Cement and Concrete Research, 32(10), 1507-1513(2002).
    101.Viallis-Terrisse, H., Nonat, A. and Petit, J. -C., “Zeta-Potential Study of Calcium Silicate Hydrates Interacting with Alkaline Cations,” Journal of Colloid and Interface Science, 244(1), pp.58-65(2001).
    102.Jongepier, R. and Kuilman, B., “Characteristics of The Rheology Bitumens,” Proceedings of the Association of Asphalt Paving Technologists, Vol.38, pp.98-121(1969).
    103.Nielsen, L. E. and Landel, R. F, Mechanical Properties of Polymers and Composites:Second Edition EM, New York Marcel Dekker Inc (1994).
    104.Goodrich, J. L., Asphaltic Binder Rheology, Asphalt Concrete Rheology and Asphalt Concrete Mix Properties, Chevron Research and Technology Company(1991).
    105.Mix design Methods for Asphalt Concrete and Other Hot-Mix Types(MS-2), The Asphalt Institute(1974).
    106.ASTM D2493, Calculation of Mixing and Compaction Temperatures.
    107.Barnes, H. A., Hutton, J. F. and Walters, K., An Introduction to Rheology, Elsevier Science Pub Co, 5th reprint 2001 edition.
    108.Nawa, T., Eguchi, H. and Fukaga, Y., “Effect of Alkali Sulfate on the Rheological Behavior of Cement Paste Containing a Superplasticizer,” ACI SP-119, pp.405-424(1989).
    109.Clark, P. E., “The Rheologival Behavior of Fresh Cement Paste,” Cement and Concrete Research, Vol.18, No.6, pp. 327-341(1988).
    110.Decker, E.A., and Fleming, J.P., Admixture for Flowing Concrete in Chemical Admixture for Concrete, E. and F.N. Spon, New York(1978).
    111.Mang Tai and Byron E. Ruth, “Basic Rheology and Rheological Concepts Establish by H. E. Schweyer,” ASTM ATP 941, pp. 118-145(1987).
    112.Agnusdei, j., Bolzan. P. and Losco, O., “Rheological Behavior of Asphalt Emulsions and Asphalt Emulsion Residues,” Indian Highways, Vol.18(9), pp.31-39(Sep 1990).
    113.Allan, M. L., “Rheology of Latex-Modified Grouts,” Cement and Concrete Research, Vol.27, No.12, pp.1875-1884(1997).
    114.Mindess, S. and Young, J. F., Concrete, Prentice-Hall, Inc., Englewood Cliffs. New Jersy(1981).
    115.Soroka, I., “The Determination of Setting Time of Portland Cement by the Vicatt Test,” Cement and Concrete Reserch, Vol.14, pp.884-886 (1984).
    116.Cavallo, J. and Chang, D., “Emulsion Preparation and Stability,” Chemical Engineering Progress, Vol.86, 6, pp.54-59(1990).
    117.Struble, L., and Sun, G. -K., “Viscosity of Portland Cement Paste as a Function of Concentration,” Advanced Cement Based Materials, Volume 2, Number 2, pp.62-69(1995).
    118.Chen Zong Qi, and Wang Guang Xin, and Xu Gui Ying, Colloid and Interface Chemistry, Higher education press, Bei-Jing city, pp.166-172, pp.128-131(2003).
    119.Chiara, F. Ferraris and Nicos, S. Martys, “Relating Fresh Concrete Viscosity Measurements from Different Rheometers,” Journal of Research of the National Institute of Standards and Technology, Vol.108, No.3, pp.229-234(2003).
    120.Hyun Joon Kong, Stacy G. Bike and Victor, C. Li., “Electrosteric stabilization of concentrated cement suspensions imparted by a strong anionic polyelectrolyte and a non-ionic polymer,” Cement and Concrete Research, Vol.36, pp.842–850(2006).
    121.Lim, G. G., Gong, S. S., Kim, D. S., Lee, B. J., and Rhb, J. S., “Slump Loss Control of Cement Paste by Adding Polycarboxylic Type Slump-Releasing Dispersant,” Cement and Concrete Research, Vol.29, No.2, pp.223-229(1999).
    122.Singh, N. B., Sarvahi, R. and Singh, N. P., “Effect of Superplasticizers on the Hydration of Cement,” Cement and Concrete Research, Vol.22, No.5, pp.725-735(1992).
    123.Mehta, P. K., Concrete Structure, Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersy (1986).
    124.Fundamentals of Slab Track in Japan. Track Material Manufactures Group in Japan(1991).
    125.黃兆龍,「混凝土性質與行為」,台北,詹氏書局,2002
    126.梅迎軍、王培銘、馬一平,「纖維對聚合物改性水泥砂漿乾縮性能的影響」,商品砂漿的研究與應用,中國北京,機械工業出版社,pp.136-143。
    127.Mindess, S. and J. F. Young. Concrete. Prentice-Hall Inc. Englewood Cliffs. N. J.(1981).
    128.Mehta, P. K. and J. M. Montliro. Concrete Structure, Properties and Materials. Prentice-Hall Inc. Englewood Cliffs. N. J.(1993).
    129.Struble, L. and Mindess, S., “Morphology of the cement-aggregate bond,” International Journal of Cement Composites and Lightweight Concrete , Volume 5, Issue 2, Pages 79-86(1983).
    130.Neville, A. M., Properties of Concrete, Longman Group Limited, England(1995).
    131.Hwang, C. L., The property and Behavior of Concrete. Chan’s Arch Books CO., LTD. Taipei. Taiwan(2003).
    132.Mobasher, B., Stang, H. and Shah, S. P., “Microcracking in fiber reinforced concrete,” Cement and Concrete Research, Volume 20, Issue 5, Pages 665-676(1990).
    133.Suresh, S., Tschegg, E. K., and Brockenbrough, J. R., “Fatigue crack growth in cementitious materials under cyclic compressive loads,” Cement and Concrete Research, Volume 19, Issue 5, Pages 827-833 (1989).
    134.Raphael, J. M., “Tensile Strength of concrete,” ACI Journal, Vol.81, Number 2, pp.158-165(1984).
    135.Gianluca Cusatis and Zdeněk P. Bažant and Luigi Cedolin, “Confinement-shear lattice CSL model for fracture propagation in concrete,” Computer Methods in Applied Mechanics and Engineering, Volume 195, Issue 52, Pages 7154-7171(2006).
    136.Pietro Bocca, Alberto Carpinteri and Silvio Valente, “Mixed mode fracture of concrete,” International Journal of Solids and Structures, Volume 27, Issue 9, Pages 1139-1153(1991).
    137.除培華、王安玲,「公路工程混合料配合比設計與試驗技術手冊」,北京,人民交通出版社,2001。
    138.交通部公路總局,「施工說明書技術規定」,2005年06月。
    139.Braja M. Das, Principles of Geotechnical Engineering, PWS PUBLISHING COMPANY(2001).
    140.劉弘祥翻譯,「大地工程原理」,科技圖書股份有限公司,1992。
    141.鄭健龍、周志剛、張起森,「瀝青路面抗裂設計理論與方法」,北京,人民交通出版社,2003。
    142.東北林學道橋系譯,「近代道路路面設計」,北京,人民交通出版社,1984。
    143.吳佩瑜、楊家琪譯,「路面設計,北京,人民交通出版社」,1987。
    144.Guide for Design of Pavement Structure, AASHTO(1994).
    145.王新友,「瀝青路面強度變化規律及養護」,鄭州市,黃河水利出版社,2004。
    146.Kennedy, T. W., Roberts, F. L. and Lee, K. W., “Evaluation of Moisture Effects on Asphalt Concrete Mixtures,” TRR 911, pp.118-162 (1972).
    147.Schmidt, R. J. and Graf, P. E., “The Effect of Water on the Resilient Modulus Asphalt Treated Mixed,” AAPT Vol.41, pp.118-162(1972).
    148.Decker, Dale S. and Joseph L. Goodrich, “Asphalt Cement Properties Related to Pavement Performance,” AAPT Vol.58, pp.503-518(1989).
    149.Curtis, C. W., Stroup-Gardiner, M., Brannan, C. J. and Jones, D. R., “Net Adsorption of Asphalt on Aggregate to Evaluate Water Sensitivity,” 71st Annual Meeting, Transport Research Board, Washington, Paper No. 920435, TRR 1362, pp.10-19.
    150.林志棟、謝志尚,「利用動力撓度儀觀測路面撓度以評估路面結構強度之研究」,台灣省交通處公路局,1980。
    151.Thornton, S., and Elliott, R. P., “Resilient Modulus–What is it ?” Prroceeding of 37th Highway Geology Symposium, Helena, Montana, pp.267-282(1986).
    152.汪立威,「柔性鋪面彈性模數之回算及試驗分析」,國立中央大學土木工程研究所碩士論文,1994。
    153.沈得縣,「多孔隙瀝青混凝土路面之設計與施工」,材料科技在營建工程之應用研討會論文集~2000年近代營建工程研討會系列二,第149-172頁,2000。
    154.劉明仁,「排水性鋪面設計觀念、排水效果、結構強度改質」,鋪面排水與行車安全研討會論文集,1999。
    155.Asphalt Institute (MS-2), Mix design methods for asphalt concrete and other hot mix types(1984).
    156.Huang, Y. H., Pavement Analysis and Design, Prentice Hall, Englewood cliffs, New Jersey(1993).
    157.Little, O. N., Buffon, J. W. and Youssef, H., “Development of Criteria to Evaluate Uniaxial Creep Data and Asphalt Concrete Permanent Deformation Potential,” TRB NO.1417, PP.49~57(1992).

    QR CODE