簡易檢索 / 詳目顯示

研究生: 邱宇謙
CHIU,YU-CHIEN
論文名稱: 載子遷移機制在不同尺寸的氮銦化鎵基發光二極體之比較
Comparision of carrier transport mechanisms between different sized InGaN-based light-emitting diodes
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 楊恆隆
Heng-long Yang
葉秉慧
Pinghui-Sophia Yeh
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: 發光二極體理想因子藍位移隧穿光譜
外文關鍵詞: Light emitting diode, Ideality factor, Blue shift, Tunneling, Spectrum
相關次數: 點閱:193下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是透過InGaN-based LEDs電特性及光譜間變化的關係對不同尺寸下三波長晶粒的載流子傳輸及複合方式進行分析,三波長晶粒分別是具有不同銦含量的紫外光、紫光及藍光,首先以單脈衝電流模式作為輸入,對三波長晶粒進行電性分析推得理想因子,並藉由積分球進行光譜量測,透過比較發射光譜的比較表明,隨著電流密度的增加,擴散,複合和隧穿在載流子傳輸機制中占主導地位,並且載流子傳輸機制與發射光譜的拓寬之間存在相關性。然而,隨著含有豐富In藍色LEDs中電流密度的增加,與缺陷相關的發射光譜增加和發射峰的藍移是更加明顯,理論模型表示當電流密度上升,載子數目增加,LEDs接面溫度也隨之上升,在量子井中載流子密度的增加導致載流子隧穿,複合,擴散電流和溢流的增加,因此理想因子和插牆效率降低。


    The purpose of this research is to analyze the carrier transport mechanisms and recombination of three wavelength chips at different sizes through the relationship between InGaN-based LEDs electrical characteristics and spectral changes. The three-wavelength chips are ultraviolet light, violet light and blue light with different indium contents, respectively. First of all, use a single-pulsed current mode as input, and perform electrical analysis on the three-wavelength chips of different sizes to calculate the ideal factor. Spectral measurement by integrating spheres. A comparison of the emission spectra shows that with an increase in the current density, diffusion, recombination, and tunneling dominate the carrier transport mechanism, and a correlation exists between the carrier transport mechanisms and the broadening of the emission spectrum. However, the increase in defect-related emissions and the blue shift of the emission peak are more noticeable with an increase in the current density in In-rich blue LEDs. The increase in carrier density in the quantum well causes a growth of the carrier tunneling, recombination, diffusion, and overflow due to which the ideality factor and efficiency decrease.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 V 表目錄 VII 第一章 導論 1 1.1前言 1 1.2文獻回顧 2 1.3論文架構 5 第二章 研究目的與方法 6 2.1研究目的 6 2.2量測方法與儀器介紹 7 2.2.1積分球與I-V電性量測 7 2.3順向電壓法原理 10 2.3.1實驗架構 14 2.3.2實驗方法 15 2.4理想因子與Cs計算原理 17 2.5有效載子生命期計算原理 18 第三章 晶粒尺寸效應實驗結果 20 3.1尺寸效應下藍光LEDs之比較 20 3.1.1不同尺寸下藍光LEDs熱性之比較 20 3.1.2不同尺寸下藍光LEDs電性之比較 21 3.1.3不同尺寸下藍光LEDs光性之比較 27 3.1.4不同尺寸下藍光LEDs插牆效率之比較 29 3.2 尺寸效應下紫光LEDs之比較 30 3.2.1不同尺寸下紫光LEDs熱性之比較 30 3.2.2不同尺寸下紫光LEDs電性之比較 31 3.2.3不同尺寸下紫光LEDs光性之比較 37 3.2.4不同尺寸下紫光LEDs插牆效率之比較 38 3.3尺寸效應下紫外光LEDs熱、電、光、插牆效率之比較 39 3.3.1不同尺寸下紫外光LEDs熱性之比較 39 3.3.2不同尺寸下紫外光LEDs電性之比較 40 3.3.3不同尺寸下紫外光LEDs光性之比較 46 3.3.4不同尺寸下紫外光LEDs插牆效率之比較 48 第四章 接面電阻與接面溫度關係 49 4.1 Cs理論推導(Cs隨著溫度上升的變化) 49 4.2尺寸24×24mil LEDs之有效載子生命期 51 4.2.1尺寸24×24mil藍光LEDs之有效載子生命期 52 4.2.2尺寸24×24mil紫光LEDs之有效載子生命期 54 4.2.3尺寸24×24mil紫外光LEDs之有效載子生命期 56 4.3以載子遷移率和有效載子生命期證明接面電阻與接面溫度關係 58 第五章 結論與建議 60 5.1結論 60 5.2未來展望 63 參考資料 64

    [1] G. Verzellesi et al., "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," Journal of Applied Physics, Review vol. 114, no. 7, 2013, Art. no. 071101.
    [2] E. F. Schubert, Light-emitting diodes, second ed. 2006.
    [3] Y. S. Lin et al., "Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells," Applied Physics Letters, Article vol. 77, no. 19, pp. 2988-2990, 2000.
    [4] D. S. Shin, D. P. Han, J. Y. Oh, and J. I. Shim, "Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence," Applied Physics Letters, Article vol. 100, no. 15, 2012, Art. no. 153506.
    [5] Z. Li et al., "Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells," Journal of Applied Physics, Article vol. 115, no. 8, 2014, Art. no. 083112.
    [6] M. Auf Der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, "Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations," Physical Review Letters, Article vol. 116, no. 2, 2016, Art. no. 027401.
    [7] T. Langer, H. Jönen, A. Kruse, H. Bremers, U. Rossow, and A. Hangleiter, "Strain-induced defects as nonradiative recombination centers in green-emitting GaInN/GaN quantum well structures," Applied Physics Letters, Article vol. 103, no. 2, 2013, Art. no. 022108.
    [8] J. H. Park, J. Cho, E. F. Schubert, and J. K. Kim, "The effect of imbalanced carrier transport on the efficiency droop in GaInN-Based blue and green light-emitting diodes," Energies, Article vol. 10, no. 9, 2017, Art. no. 1277.
    [9] T. Takeuchi et al., "Quantum-confined Stark effect in strained GaInN quantum wells on sapphire (0 0 0 1)," Journal of Crystal Growth, Article vol. 189-190, pp. 616-620, 1998.
    [10] S. H. Han et al., "Effect of internal electric field in well layer of InGaN/GaN multiple quantum well light-emitting diodes on efficiency droop," Japanese Journal of Applied Physics, Article vol. 51, no. 10, 2012, Art. no. 100201.
    [11] V. Avrutin, S. D. A. Hafiz, F. Zhang, Ü. Özgür, H. Morkoç, and A. Matulionis, "InGaN light-emitting diodes: Efficiency-limiting processes at high injection," Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, Review vol. 31, no. 5, 2013, Art. no. 050809.
    [12] X. Meng et al., "Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis," Applied Physics Letters, Article vol. 108, no. 1, 2016, Art. no. 013501.
    [13] C. De Santi et al., "Role of defects in the thermal droop of InGaN-based light emitting diodes," Journal of Applied Physics, Article vol. 119, no. 9, 2016, Art. no. 094501.
    [14] C. Lu et al., "Investigation of the electroluminescence spectrum shift of InGaN/GaN multiple quantum well light-emitting diodes under direct and pulsed currents," Journal of Applied Physics, Article vol. 113, no. 1, 2013, Art. no. 013102.
    [15] D. P. Han et al., "Analysis of nonradiative recombination mechanisms and their impacts on the device performance of InGaN/GaN light-emitting diodes," Japanese Journal of Applied Physics, Article vol. 54, no. 2, 2015, Art. no. 02ba01.
    [16] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, "Temperature and compositional dependence of the energy band gap of AlGaN alloys," Applied Physics Letters, Article vol. 87, no. 24, pp. 1-3, 2005, Art. no. 242104.
    [17] L. Wang et al., "Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes," Optics Express, Article vol. 19, no. 15, pp. 14182-14187, 2011.
    [18] Y. Tu et al., "Influences of point defects on electrical and optical properties of InGaN light-emitting diodes at cryogenic temperature," Journal of Applied Physics, Article vol. 123, no. 16, 2018, Art. no. 161544.
    [19] D. H. Kim, Y. S. Park, D. Kang, K. K. Kim, T. Y. Seong, and H. Amano, "Combined effects of V pits and chip size on the electrical and optical properties of green InGaN-based light-emitting diodes," Journal of Alloys and Compounds, Article vol. 796, pp. 146-152, 2019.
    [20] Z. Gong et al., "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," Journal of Applied Physics, Article vol. 107, no. 1, 2010, Art. no. 013103.
    [21] F. Olivier, A. Daami, C. Licitra, and F. Templier, "Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study," Applied Physics Letters, Article vol. 111, no. 2, 2017, Art. no. 022104.
    [22] Y. Xi and E. F. Schubert, "Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Applied Physics Letters, Article vol. 85, no. 12, pp. 2163-2165, 2004.
    [23] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," 1967.
    [24] 方昱棋, "晶粒尺寸效應對白光發光二極體發光顏色之影響," 碩士論文, 國立臺灣科技大學, 2015.
    [25] A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, "High power light-emitting diode junction temperature determination from current-voltage characteristics," Journal of Applied Physics, Article vol. 104, no. 9, 2008, Art. no. 093104.
    [26] D. S. Meyaard, J. Cho, E. Fred Schubert, S. H. Han, M. H. Kim, and C. Sone, "Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes," Applied Physics Letters, Article vol. 103, no. 12, 2013, Art. no. 121103.
    [27] W. Shan, B. D. Little, J. J. Song, Z. C. Feng, M. Schurman, and R. A. Stall, "Optical transitions in InxGa1-xN alloys grown by metalorganic chemical vapor deposition," Applied Physics Letters, Article vol. 69, no. 22, pp. 3315-3317, 1996.
    [28] J. C. Su and C. H. Chuang, "Carrier transport mechanisms of InGaN-based light-emitting diodes using a single pulsed current," Superlattices and Microstructures, Article vol. 128, pp. 319-326, 2019.
    [29] P. Dalapati, N. B. Manik, and A. N. Basu, "Influence of temperature on different optoelectronic characteristics of InGaN light emitting diodes," Optical and Quantum Electronics, Article vol. 49, no. 8, 2017, Art. no. 265.
    [30] P. Dalapati, N. B. Manik, and A. N. Basu, "Studies on the Effect of Temperature on Electroluminescence, Current–Voltage, and Carrier Lifetimes Characteristics in a InGaN/Sapphire Purple Light Emitting Diode," Journal of Electronic Materials, Article vol. 45, no. 6, pp. 2683-2691, 2016.
    [31] 莊志軒, "大尺寸氮化鎵基發光二極體在脈衝電流操作下之電、光及熱性分析," 碩士論文, 國立臺灣科技大學, 2018.
    [32] D. Zhu et al., "The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes," Applied Physics Letters, Article vol. 94, no. 8, 2009, Art. no. 081113.
    [33] P. Biljanovic and T. Suligoj, "Thermionic emission process in carrier transport in pn homojunctions," in Proceedings of the Mediterranean Electrotechnical Conference - MELECON, 2000, vol. 1, pp. 248-251.
    [34] D. Yan, H. Lu, D. Chen, R. Zhang, and Y. Zheng, "Forward tunneling current in GaN-based blue light-emitting diodes," Applied Physics Letters, Article vol. 96, no. 8, 2010, Art. no. 083504.
    [35] N. I. Bochkareva et al., "Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes," Applied Physics Letters, Article vol. 96, no. 13, 2010, Art. no. 133502.
    [36] L. Pelaz, J. L. Orantes, L. Enríquez, L. Bailón, and J. Barbolla, "Saturation of generation-recombination current for very small recombination times," Journal of Applied Physics, Article vol. 76, no. 11, pp. 7384-7389, 1994.
    [37] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, "Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes," IEEE Electron Device Letters, Article vol. 23, no. 9, pp. 535-537, 2002.
    [38] J. M. Shah, Y. L. Li, T. Gessmann, and E. F. Schubert, "Experimental analysis and theoretical model for anomalously high ideality factors (n≫2.0) in AlGaN/GaN p-n junction diodes," Journal of Applied Physics, Article vol. 94, no. 4, pp. 2627-2630, 2003.
    [39] P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, "Temperature-dependent efficiency droop analysis of InGaN MQW light-emitting diode with modified ABC model," Journal of Computational Electronics, Article vol. 15, no. 4, pp. 1511-1520, 2016.
    [40] X. A. Cao and S. F. LeBoeuf, "Current and temperature dependent characteristics of deep-ultraviolet light-emitting diodes," IEEE Transactions on Electron Devices, Article vol. 54, no. 12, pp. 3414-3417, 2007.
    [41] X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, "Temperature-dependent electroluminescence of AlGaN-based UV LEDs," IEEE Electron Device Letters, Article vol. 27, no. 5, pp. 329-331, 2006.
    [42] F. Nippert et al., "Temperature-dependent recombination coefficients in InGaN light-emitting diodes: Hole localization, Auger processes, and the green gap," Applied Physics Letters, Article vol. 109, no. 16, 2016, Art. no. 161103.
    [43] A. F. M. Anwar, S. Wu, and R. T. Webster, "Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors," IEEE Transactions on Electron Devices, Article vol. 48, no. 3, pp. 567-572, 2001.

    QR CODE