簡易檢索 / 詳目顯示

研究生: 林宜筠
Yi-Yun Lin
論文名稱: 以次臨界流體萃取廢棄陰極射線螢光粉中之稀土金屬釔與銪
Recovery of Yttrium and Europium from Waste CRT Phosphor by Subcritical Water Extraction
指導教授: 劉志成
Jhy-Chern Liu
口試委員: none
Suryadi Ismadji
郭俞麟
Yu-Lin Kuo
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 97
中文關鍵詞: 陰極射線螢光粉重金屬回收連續萃取次臨界水萃取
外文關鍵詞: CRT phosphor, Europium, Heavy metals, Recovery, Sequential extraction, Subcritical water extraction, Yttrium
相關次數: 點閱:334下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

稀土金屬如釔(Y)和銪(Eu)為兩種廣泛應用在電子產品中不可或缺的金屬,常作為螢幕顯示器中的螢光材料。隨著電子產品設計日新月異、其生命週期短縮,近年來電子廢棄物數量不斷持續增加。因此,有效地將稀土金屬從電子廢棄物中回收與再利用極具經濟價值。本實驗研究目的為利用次臨界水萃取程序回收廢棄陰極射線管中螢光粉的稀土金屬釔與銪,並探討酸種類、酸濃度以及萃取溫度對其回收之影響。定性結果顯示,廢棄陰極射線螢光粉成分複雜,除了稀土金屬釔及銪之外尚有重金屬鋅與鉛。實驗結果顯示,使用鹽酸、硫酸與硝酸進行萃取,以硫酸萃取金屬釔及銪的萃取效率最好,同時重金屬雜質鋅與鉛的萃取含量低。當萃取溫度控制在100oC,且硫酸濃度從0.1提升到0.75 M,金屬釔與銪的萃取效率亦有效提升。除此之外,硫酸濃度在0.75 M、萃取溫度從100oC提升至150oC時,金屬釔與銪的萃取效率分別從27.13%及28.60%大幅提升至100%。另一方面,本研究採用連續萃取的方式探討次臨界水萃取後固態螢光粉殘留物中重金屬(鋅與鉛)的型態變化,並評估其在環境中的釋放行為。連續萃取實驗結果顯示,經過次臨界流體萃取可有效的將鋅與鉛轉換成穩定、低流動性的型態。


Rare earth metals such as yttrium (Y) and europium (Eu) are widely applied in electronic products, especially as an essential constituent in the phosphor. With the life cycle of electronic products becomes shorter, the amount of electronic waste (e-waste) increases continuously in recent years. Therefore, recycling and reuse of rare earth metals from the e-waste is critical for sustainable development. The current study investigated Y and Eu recovery from waste cathode ray tube (CRT) phosphor by subcritical water extraction (SWE). Effects of acid type, acid concentration and extraction temperature were examined. Experimental results indicated that extraction efficiency of Y and Eu was the best using sulfuric acid (H2SO4) while that of heavy metal was the lowest compared to hydrochloric acid (HCl) and nitric acid (HNO3). Both Y and Eu extraction efficiency increased as H2SO4 concentration increased from 0.1 M to 0.75 M. It is noted that Y and Eu extraction efficiency could reach 100% from 27.13% and 28.60%, respectively, when temperature increased from 100oC to 150oC at 0.75 M of H2SO4. On the other hand, sequential extraction was conducted to assess speciation of heavy metals, such as Zn and Pb in waste CRT phosphor residue after SWE. The sequential extraction results revealed that SWE process transformed heavy metals to a more stable state.

摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER 1 INTRODUCTION 1-1 1.1. Background 1-1 1.2. Objectives of study 1-2 CHAPTER 2 LITERATURE REVIEW 2-1 2.1. Yttrium (Y), europium (Eu) and cathode ray tube (CRT) phosphor 2-1 2.2. Treatments of waste phosphor 2-4 2.3. Subcritical water extraction (SWE) 2-4 2.4. Sequential extraction 2-11 CHAPTER 3 MATERIALS AND METHODS 3-1 3.1. Materials and regents 3-1 3.2. Instruments 3-3 3.3. Source of waste CRT phosphor 3-4 3.4. Experimental framework and procedures 3-6 3.5. Experimental method 3-9 3.5.1. Pretreatment of waste CRT phosphor 3-9 3.5.2. Subcritical water extraction (SWE) 3-9 3.5.3. Sequential Extraction 3-11 3.5.4. Sample analysis 3-13 CHAPTER 4 RESULTS AND DISCUSSION 4-1 4.1. Characterization of waste CRT phosphor 4-1 4.1.1. Total metal content 4-1 4.1.2. Chemical compositions by XRF 4-4 4.1.3. Surface analysis by FESEM-EDX 4-6 4.1.4. Crystallization analysis by XRD 4-6 4.2. Results from subcritical water extraction 4-11 4.2.1. Effect of acid type 4-13 4.2.2. Effect of acid concentration 4-16 4.2.3. Effect of extraction temperature 4-18 4.3. Sequential extraction results 4-22 4.3.1. Chemical speciation of residue after effect of acid type with SWE 4-23 4.3.2. Chemical speciation of residue after effect of acid concentrated with SWE 4-23 4.3.3. Chemical speciation of residue after effect of temperature with SWE 4-24 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 5-1 5.1. Conclusions 5-1 5.2. Recommendations 5-2 REFERENCE R-1 APPENDIX EXPERIMENTAL DATA A-1

Akinlua, A. and Smith, R. (2010). Subcritical water extraction of trace metals from petroleum source rock. Talanta, 81(4-5), pp.1346-1349.
Baldé, C.P., Wang, F., Kuehr, R., Huisman, J. (2015), The global e-waste monitor – 2014, United Nations University, IAS – SCYCLE, Bonn, Germany, pp.8-25.
Beltrami, D., Deblonde, G., Bélair, S. and Weigel, V. (2015). Recovery of yttrium and lanthanides from sulfate solutions with high concentration of iron and low rare earth content. Hydrometallurgy, 157, pp.356-362.
Binnemans, K., Jones, P., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. and Buchert, M. (2013). Recycling of rare earths: a critical review. Journal of Cleaner Production, 51, pp.1-22.
Borra, C., Pontikes, Y., Binnemans, K. and Van Gerven, T. (2015). Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 76, pp.20-27.
Carr, A., Mammucari, R. and Foster, N. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), pp.1-17.
Chen, H., Zhai, Y., Xu, B., Xiang, B., Zhu, L., Qiu, L., Liu, X., Li, C. and Zeng, G. (2014). Fate and risk assessment of heavy metals in residue from co-liquefaction of Camellia oleifera cake and sewage sludge in supercritical ethanol. Bioresource Technology, 167, pp.578-581.
Chen, M. and Ma, L. (2001). Comparison of Three Aqua Regia Digestion Methods for Twenty Florida Soils. Soil Science Society of America Journal, 65(2), p.491.
Croudace, I. and Rothwell, R. (n.d.). Micro-XRF studies of sediment cores. Netherlands: Springer, pp.16-19.
Cucchiella, F., D’Adamo, I., Lenny Koh, S. and Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews, 51, pp.263-272.
De Michelis, I., Ferella, F., Varelli, E. and Vegliò, F. (2011). Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses. Waste Management, 31(12), pp.2559-2568.
FGD recycling industrial, Resource processing flow diagram. (2015). Available from: http://www.fgd.com.tw/resource.php
Guyonnet, D., Planchon, M., Rollat, A., Escalon, V., Tuduri, J., Charles, N., Vaxelaire, S., Dubois, D. and Fargier, H. (2015). Material flow analysis applied to rare earth elements in Europe. Journal of Cleaner Production, 107, pp.215-228.
Habib Al Razi, K. (2016). Resourceful recycling process of waste desktop computers: A review study. Resources, Conservation and Recycling, 110, pp.30-47.
Haghighi, A. and Khajenoori, M (2013). Subcritical Water Extraction, Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modeling, Dr. Hironori Nakajima (Ed.), InTech, DOI: 10.5772/54993. Available from: http://www.intechopen.com/books/mass-transfer-advances-in-sustainable-energy-and-environment-oriented-numerical-modeling/subcritical-water-extraction
Hu, Y., Zhang, P., Li, J. and Chen, D. (2015). Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. Journal of Hazardous Materials, 299, pp.149-157.
Innocenzi, V., De Michelis, I., Ferella, F. and Vegliò, F. (2013a). Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation. Waste Management, 33(11), pp.2390-2396.
Innocenzi, V., De Michelis, I., Ferella, F., Beolchini, F., Kopacek, B. and Vegliò, F. (2013b). Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation. Waste Management, 33(11), pp.2364-2371.
Innocenzi, V., De Michelis, I., Kopacek, B. and Vegliò, F. (2014). Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes. Waste Management, 34(7), pp.1237-1250.
Islam, M., Jung, H. and Park, J. (2015). Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals. Journal of Environmental Management, 163, pp.262-269.
Islam, M., Park, J., Shin, M. and Park, H. (2014). Decontamination of PCBs-containing soil using subcritical water extraction process. Chemosphere, 109, pp.28-33.
Jo, Y., Kim, J., Jung, K., Min, S. and Chun, J. (2015). Korean Journal for Food Science of Animal Resources, 35(1), pp.35-40.
Kahhat, R. and Williams, E. (2012). Materials flow analysis of e-waste: Domestic flows and exports of used computers from the United States. Resources, Conservation and Recycling, 67, pp.67-74.
Kirmizakis, P., Tsamoutsoglou, C., Kayan, B. and Kalderis, D. (2014). Subcritical water treatment of landfill leachate: Application of response surface methodology. Journal of Environmental Management, 146, pp.9-15.
Kislik, V. (2012). Solvent extraction. Oxford: Elsevier, pp.483-524.
Li, L., Xu, Z. R., Zhang, C., Bao, J., Dai, X. (2012). Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge. Bioresource Technology, 121, 169–175.
Liu, H., Li, L., Yin, C., Shan, B. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. Journal of Environmental Sciences, 20, 390–397.
Liu, H., Zhang, S., Pan, D., Tian, J., Yang, M., Wu, M. and Volinsky, A. (2014). Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution. Journal of Hazardous Materials, 272, pp.96-101.
Marchioretto, M.M., Bruning, H., Loan, N.T.P., Rulkens, W.H. (2002). Heavy metals extraction from anaerobically digested sludge. Water Science Technology, 46(10), pp.1-8.
Massari, S. and Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), pp.36-43.
Meguellati, M., Robbe, D., Marchandise, P., Astruc, M. (1983). A new chemical extraction procedure in the fractionation of heavy metals in sediments-interpretation. Proceedings of the International Conference on Heavy Metals in the Environment, Heidelberg, German, pp.1090-1093.
Möller, M., Nilges, P., Harnisch, F. and Schröder, U. (2011). Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation. ChemSusChem, 4(5), pp.566-579.
Moss, R., Tzimas, E., Willis, P., Arendorf, J., Thompson, P., Chapman, A., Morley, N., Sims, E., Bryson, R., Peason, J., Tercero-Espinoza, L., Sartorius, C., Ostertag, K. (2013). Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector. Assessing Rare Metals as Supply-chain Bottlenecks in Low-carbon Energy Technologies, p. 242.
Mukherjee, N. (2016). Unusual properties of water: Phase behavior of Subcritical and Supercritical water. Available from: https://www.linkedin.com/pulse/unusual-properties-water-phase-behavior-subcritical-mukherjee.
Oh, S., Yoon, M., Kim, I., Kim, J. and Bae, W. (2011). Chemical extraction of arsenic from contaminated soil under subcritical conditions. Science of The Total Environment, 409(16), pp.3066-3072.
Pan, X., Peng, L., Chen, W., Wang, J. and Chen, Z. (2013). Recovery of Y and Eu from Waste Phosphors of CRT TVs and the Preparation of Yttrium Europium Oxide. AMM, 295-298, pp.1840-1845.
Parthasarathy, P., Keshav, A. B., Anantha Murthy, K. S. (2008). E-waste recycling – best option for resource recovery and sustainable environment. Research Journal of Chemistry and Environmental, 12, pp.93–98.
Perkins, D., Brune Drisse, M., Nxele, T. and Sly, P. (2014). E-Waste: A Global Hazard. Annals of Global Health, 80(4), pp.286-295.
Plaza, M. and Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry, 71, pp.39-54.
Rabah, M. (2008). Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Management, 28(2), pp.318-325.
Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46(3), pp.449-455.
Resende, L. and Morais, C. (2010). Study of the recovery of rare earth elements from computer monitor scraps – Leaching experiments. Minerals Engineering, 23(3), pp.277-280.
Rodgers, K., Hursthouse, A. and Cuthbert, S. (2015). The Potential of Sequential Extraction in the Characterisation and Management of Wastes from Steel Processing: A Prospective Review. International Journal of Environmental Research and Public Health, 12(9), pp.11724-11755.
Sarkar, S. K., Favas, P. J.C., Rakshit, D., Satpathy, K. K. (2014). Geochemical Speciation and Risk Assessment of Heavy Metals in Soils and Sediments, Environmental Risk Assessment of Soil Contamination, Dr. Maria C. Hernandez Soriano (Ed.), InTech, Available from: http://www.intechopen.com/books/environmental-risk-assessment-of-soil-contamination/geochemical-speciation-and-risk-assessment-of-heavy-metals-in-soils-and-sediments
Shi, W., Liu, C., Ding, D., Lei, Z., Yang, Y., Feng, C. and Zhang, Z. (2013). Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresource Technology, 137, pp.18-24.
Singh, N., Li, J. and Zeng, X. (2016). Solutions and challenges in recycling waste cathode-ray tubes. Journal of Cleaner Production, 133, pp.188-200.
Shimizu, R., Sawada, K., Enokida, Y. and Yamamoto, I. (2005). Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps. The Journal of Supercritical Fluids, 33(3), pp.235-241.
Taguchi, M., Nakane, T., Matsushita, A., Sakka, Y., Uchikoshi, T., Funazukuri, T. and Naka, T. (2014). One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions. The Journal of Supercritical Fluids, 85, pp.57-61.
Tavakoli, O. and Yoshida, H. (2008). Application of sub-critical water technology for recovery of heavy metal ions from the wastes of Japanese scallop Patinopecten yessoensis. Science of The Total Environment, 398(1-3), pp.175-184.
Teo, C., Tan, S., Yong, J., Hew, C. and Ong, E. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), pp.2484-2494.
Tessier, A., Campbell, P. and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), pp.844-851.
Tokalioǧlu, Ş., Kartal, Ş. and Elçi, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413(1-2), pp.33-40.
U.S. Geological Survey, Mineral Commodity Summaries, (2016). Available from: http://minerals.usgs.gov/minerals/pubs/mcs/
Vaclav, G. (2007). Method of extracting Europium (III) and yttrium (III) from concentrate of luminophore dust or sludge. EP 1817437.
Wu, Y., Yin, X., Zhang, Q., Wang, W. and Mu, X. (2014). The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resources, Conservation and Recycling, 88, pp.21-31.
Xie, F., Zhang, T., Dreisinger, D. and Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 56, pp.10-28.
Xu, C., Lee, J. and Teja, A. (2008). Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water. The Journal of Supercritical Fluids, 44(1), pp.92-97.
Yabalak, E. and Gizir, A.M., (2013). Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. Journal of Serbian Chemical. Society, 78, 1013-1022.
Yang, F., Kubota, F., Baba, Y., Kamiya, N., Goto, M. (2013). Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 254– 255, 79– 88.
Yang, J., Retegan, T., Steenari, B.M., Ekberg, E. (2016). Recovery of indium and yttrium from Flat Panel Display waste using solvent extraction. Separation and Purification Technology, 166, 117–124.
Yang, X., Zhang, J., Fang, X. (2014). Rare earth element recycling from waste nickel-metal hydridebatteries. Journal of Hazardous Materials, 279, 384–388.
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., Feridoun, S. A. (2014). Recovery of indium from TFT and CFg lasses in LCD panel wastes using sub-critical water. Solar Energy Materials & Solar Cells, 125, 14–19
Yu, G., Tian, X., Wu, Y., Zhe, T., Lei, Lv. (2015). Recent development of recycling lead from scrap CRTs: A technological review. Waste Management.

QR CODE