簡易檢索 / 詳目顯示

研究生: 許育甄
Yu-Chen Hsu
論文名稱: 無金屬貫孔之W頻帶雙線性極化雙層透射陣列
W-band Dual Linearly-Polarized Double Layered Transmitarray Without Using Vias
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 馬自莊
Tzyh-Ghuang Ma
陳士元
Shih-Yuan Chen
陳晏笙
Yen-Sheng Chen
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 透射陣列天線W頻帶雙線性極化雙層金屬層無貫孔
外文關鍵詞: Dual-layer, Dual-linear polarization, No vias, Transmitarray antenna, W-band
相關次數: 點閱:167下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨為設計一個雙層印刷電路板結構的79 GHz透射陣列天線,透過相對簡單的結構,在不使用金屬貫孔提升透射大小的情況下達到足夠的可控透射相位量,降低製作成本和設計時間。製作於W頻帶之透射陣列天線單元通常需要透過複雜的結構或設計方式如金屬貫孔、空氣柱、複合材料以及多層設計等,來達到足夠的透射相位量。為了解決雙層金屬層透射相位量不足的問題,吾人透過整合不同設計的透射陣列天線單元,以共振長度在半波長的十字槽孔設計單元及共振長度在一倍半波長的方環形槽孔互相補償彼此不足的透射相位,並加入相位延遲線的設計概念,使用共三種不同設計的單元來達到335 ˚的可控透射相位量,並且藉由MATLAB協助計算以找出最佳化的相位補償排列方式,最後透過實作及量測驗證本研究之透射陣列天線的輻射效果及場型,本研究架構具有以下特色:1)金屬層數以兩層為限;2)結構盡量簡單且限制不使用空氣柱或金屬貫孔的設計,以降低製作難度及成本;3)涵蓋相位量大於315 °(優於文獻紀載)。
    本研究最終成品能夠提供雙線性極化之29 dBi增益、旁瓣電平為-21 dB、3 dB增益頻寬為12.6 %,而孔徑效率為36.7 %。


    This study aims at designing a 79-GHz transmitarray suing dual-layered printed circuit board (PCB) technology without vias. Sufficient controllable transmitting phase is achieved without using metal vias, thereby reducing both production costs and design complexity. Traditional transmitarray elements operating in the W-band often require complex structures or design techniques such as metal vias, air gaps, composite materials, and multilayer designs to achieve the desired transmit phase. To overcome the limitation on transmitting phase variation when using in a dual-layered PCB without vias, this study integrates three difference transmitarray elements, including a cross-slot unit cell with a resonant length of half-wavelength and a annular slot unit cell whose resonant length is one and a half wavelengths. These transmitting phase ranges of the elements are complementary to one another to broaden the overall phase coverage, and phase delay lines are introduced to achieve a controllable transmitting phase up to 335°. MATLAB codes are employed to optimize the arrangement of phase compensation. The designed transmitarray is implemented and measured to verify its radiation characteristics and field patterns. This research has the following features: 1) fabricated on a double layer PCB; 2) no pillars or vias was used, thereby, reducing the manufacturing complexity and costs; 3) achieving a phase coverage greater than 315o, wider than that reported in literature (in the same band).
    The final design fulfills a dual linearly polarized transmitarray with a gain of 29 dBi, a sidelobe level of -21 dB, a 3 dB bandwidth of 12%, and an aperture efficiency of 36.7%. This study significantly reduces design and production costs through a simple structure.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻探討 3 1.3研究貢獻 5 1.4論文組織 6 第二章 透射陣列之單元分析 7 2.1前言 7 2.2 透射陣列系統設計流程 8 2.3單元電路模擬方法 10 2.4不同透射陣列單元之設計及分析 11 2.4.1單元一 12 2.4.2單元二 16 2.4.3單元三 21 2.5不同透射陣列單元之斜向入射與極化關係 25 2.5.1單元一 26 2.5.2單元二 28 2.5.3單元三 29 2.5.4單元整合 31 2.6結語 32 第三章 透射陣列之系統分析 33 3.1 前言 33 3.2饋入天線特性分析與模擬 34 3.3孔徑效率探討 37 3.4單元相位分布計算 41 3.5結語 44 第四章 透射陣列系統整合之實作及驗證 45 4.1 前言 45 4.2 透射陣列系統模擬方法 45 4.3透射陣列系統實作 49 4.4透射陣列系統驗證 56 4.5透射陣列之比較 73 4.6結語 75 第五章 結論 76 5.1總結 76 5.2未來發展 77 參考文獻 78

    [1] King-Wai Lam, Sze-Wai Kwok, Yeongming Hwang and T. K. Lo, "Implementation of transmitarray antenna concept by using aperture-coupled microstrip patches," Proceedings of 1997 Asia-Pacific Microwave Conference, Hong Kong, 1997, pp. 433-436 vol.1, doi: 10.1109/APMC.1997.659416.
    [2] D. Berry, R. Malech and W. Kennedy, "The reflectarray antenna," in IEEE Transactions on Antennas and Propagation, vol. 11, no. 6, pp. 645-651, November 1963, doi: 10.1109/TAP.1963.1138112.
    [3] J. Huang, "Microstrip reflectarray," Antennas and Propagation Society Symposium 1991 Digest, London, ON, Canada, 1991, pp. 612-615 vol.2, doi: 10.1109/APS.1991.174914.
    [4] Q. T. Tran and B. D. Nguyen, "1-bit Reflectarray Element Based on a Single Switch for Reconfigurable Reflectarrays," 2019 Antennas Design and Measurement International Conference (ADMInC), St. Petersburg, Russia, 2019, pp. 142-145, doi: 10.1109/ADMInC47948.2019.8969403.
    [5] G. -B. Wu, S. -W. Qu, S. Yang and C. H. Chan, "Broadband, Single-Layer Dual Circularly Polarized Reflectarrays With Linearly Polarized Feed," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4235-4241, Oct. 2016, doi: 10.1109/TAP.2016.2593873.
    [6] G. Zhao, Y. -C. Jiao, F. Zhang and F. -S. Zhang, "A Subwavelength Element for Broadband Circularly Polarized Reflectarrays," in IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 330-333, 2010, doi: 10.1109/LAWP.2010.2047836.
    [7] A. Yu, F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Rahmat‐Samii, “Aperture efficiency analysis of reflectarray antennas,” Microw. Opt. Technol. Lett., Vol. 52, No. 2, pp. 364–372, Feb. 2010.
    [8] A. Massaccesi et al., "3D-Printable Dielectric Transmitarray With Enhanced Bandwidth at Millimeter-Waves," in IEEE Access, vol. 6, pp. 46407-46418, 2018, doi: 10.1109/ACCESS.2018.2865353.
    [9] J. Teixeira, S. A. Matos, J. R. Costa, J. M. Felício and C. A. Fernandes, "Assessing different monoblock dielectric implementations of a low profile beam steering Transmitarray for 3D printing," 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 2022, pp. 1-3, doi: 10.1109/MMS55062.2022.9825583.
    [10] K. Wu, P. Qin and S. -L. Chen, "A High-Efficiency 3D-Printed E-Band Dielectric Transmitarray For Integrated Space and Terrestrial Networks," 2022 International Symposium on Antennas and Propagation (ISAP), Sydney, Australia, 2022, pp. 319-320, doi: 10.1109/ISAP53582.2022.9998682.
    [11] F. Foglia Manzillo, A. Clemente and J. L. González-Jiménez, "High-Gain D -Band Transmitarrays in Standard PCB Technology for Beyond-5G Communications," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 587-592, Jan. 2020, doi: 10.1109/TAP.2019.2938630.
    [12] Z. -W. Miao et al., "140 GHz High-Gain LTCC-Integrated Transmit-Array Antenna Using a Wideband SIW Aperture-Coupling Phase Delay Structure," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 1, pp. 182-190, Jan. 2018, doi: 10.1109/TAP.2017.2776345.
    [13] M. H. Al-Mansoori, A. S. Al-Qasmi, K. M. Al-Abri, W. S. Al-Ghaithi and M. A. A. Younis, "Wideband EDFA utilizing short-length high concentration erbium-doped fiber," 2014 IEEE 5th International Conference on Photonics (ICP), Kuala Lumpur, Malaysia, 2014, pp. 201-203, doi: 10.1109/ICP.2014.7002355.
    [14] M. Sazegar et al., "Beam Steering Transmitarray Using Tunable Frequency Selective Surface With Integrated Ferroelectric Varactors," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5690-5699, Dec. 2012, doi: 10.1109/TAP.2012.2213057.
    [15] P. -Y. Feng, S. -W. Qu, S. Yang, L. Shen and J. Zhao, "Ku-Band Transmitarrays With Improved Feed Mechanism," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 2883-2891, June 2018, doi: 10.1109/TAP.2018.2823777.
    [16] J. R. Reis et al., "FSS-Inspired Transmitarray for Two-Dimensional Antenna Beamsteering," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2197-2206, June 2016, doi: 10.1109/TAP.2016.2543802.
    [17] C. Tian, Y. -C. Jiao, G. Zhao and H. Wang, "A Wideband Transmitarray Using Triple-Layer Elements Combined With Cross Slots and Double Square Rings," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1561-1564, 2017, doi: 10.1109/LAWP.2017.2651027.
    [18] P. Mei, S. Zhang and G. F. Pedersen, "A Dual-Polarized and High-Gain X-/Ka-Band Shared-Aperture Antenna With High Aperture Reuse Efficiency," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 3, pp. 1334-1344, March 2021, doi: 10.1109/TAP.2020.3026429.
    [19] A. Aziz, F. Yang, S. Xu, M. Li and H. -T. Chen, "A High-Gain Dual-Band and Dual-Polarized Transmitarray Using Novel Loop Elements," in IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 6, pp. 1213-1217, June 2019, doi: 10.1109/LAWP.2019.2912645.
    [20] Y. -H. Yu, Z. -Y. Zong, W. Wu, Q. Chen and D. -G. Fang, "Dual-Polarized Linear Array With Overlapping Handover of Subarray to Produce Continuous Beam Scanning for Transmitarray Antenna," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 2, pp. 859-868, Feb. 2021, doi: 10.1109/TAP.2020.3016467.
    [21] S. Yang, Z. Yan, T. Zhang, M. Cai, F. Fan and X. Li, "Multifunctional Tri-Band Dual-Polarized Antenna Combining Transmitarray and Reflectarray," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 9, pp. 6016-6021, Sept. 2021, doi: 10.1109/TAP.2021.3060938.
    [22] K. Pham, R. Sauleau, E. Fourn, F. Diaby, A. Clemente and L. Dussopt, "Characterization of dual-band dual-linearly polarized transmitarray antennas," 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 2017, pp. 121-124, doi: 10.23919/EuMC.2017.8230814.
    [23] K. Pham, R. Sauleau, E. Fourn, F. Diaby, A. Clemente and L. Dussopt, "Dual-band dual-polarized transmitarrays at Ka-band," 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 59-62, doi: 10.23919/EuCAP.2017.7928119.
    [24] K. Pham, R. Sauleau, A. Clemente and L. Dussopt, "Electronically Reconfigurable Unit-Cell and Transmitarray in Dual-Linear Polarization at Ka-Band," 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1-4.
    [25] A. H. Abdelrahman, A. Z. Elsherbeni and F. Yang, "High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements," in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1288-1291, 2014, doi: 10.1109/LAWP.2014.2334663.
    [26] C. Tian, Y. -C. Jiao and G. Zhao, "Circularly Polarized Transmitarray Antenna Using Low-Profile Dual-Linearly Polarized Elements," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 465-468, 2017, doi: 10.1109/LAWP.2016.2583486.
    [27] S. B. Yeap, X. Qing and Z. N. Chen, "77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2833-2837, June 2015, doi: 10.1109/TAP.2015.2419691.
    [28] P. -Y. Qin, L. -z. Song and Y. J. Guo, "Beam Steering Conformal Transmitarray Employing Ultra-Thin Triple-Layer Slot Elements," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5390-5398, Aug. 2019, doi: 10.1109/TAP.2019.2918496.
    [29] C. Tian, Y. -Q. Lu, G. Zhao, Y. -C. Jiao and L. -X. Guo, "Double-Layer Transmitarray Antenna Using Specially Designed Substrate," in IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 3, pp. 441-445, March 2022, doi: 10.1109/LAWP.2021.3132680.
    [30] C. Tian, G. Zhao, R. -N. Du, Z. Zhang and Y. -W. Wang, "A High Efficiency Transmitarray Using Two-Layer Elements Etched on Compound Substrate," in IEEE Access, vol. 10, pp. 40073-40078, 2022, doi: 10.1109/ACCESS.2022.3166164.
    [31] K. T. Pham, R. Sauleau, E. Fourn, F. Diaby, A. Clemente and L. Dussopt, "Dual-Band Transmitarrays With Dual-Linear Polarization at Ka-Band," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 7009-7018, Dec. 2017, doi: 10.1109/TAP.2017.2762011.
    [32] X. Liu, Z. Yan, E. Wang, X. Zhao, T. Zhang and F. Fan, "Dual-Band Orthogonally-Polarized Dual-Beam Reflect-Transmit-Array With a Linearly Polarized Feeder," in IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 8596-8601, Sept. 2022, doi: 10.1109/TAP.2022.3161530.
    [33] L. -Z. Song, P. -Y. Qin and Y. J. Guo, "A High-Efficiency Conformal Transmitarray Antenna Employing Dual-Layer Ultrathin Huygens Element," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 2, pp. 848-858, Feb. 2021, doi: 10.1109/TAP.2020.3016157.
    [34] S. L. Liu, X. Q. Lin, Z. Q. Yang, Y. J. Chen and J. W. Yu, "W -Band Low-Profile Transmitarray Antenna Using Different Types of FSS Units," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4613-4619, Sept. 2018, doi: 10.1109/TAP.2018.2851372.

    QR CODE