簡易檢索 / 詳目顯示

研究生: 王楚文
Chu-Wen Wang
論文名稱: 虛擬實境影像彩度對動暈症的影響
Effects of chroma of virtual reality images on motion sickness
指導教授: 歐立成
Li-Chen Ou
口試委員: 孫沛立
Pei-Li Sun
林宗翰
Tzung-Han Lin
陳怡永
Yi-Yung Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 128
中文關鍵詞: 虛擬實境視覺動暈症彩度記憶色辨色能力
外文關鍵詞: Visually Induced Motion Sickness, Chroma
相關次數: 點閱:266下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了虛擬實境 (Virtual Reality,VR) 影像彩度對視覺動暈症 (Visually induced motion sickness) 的影響。許多人使用虛擬實境時會出現不適的情況,其主要原因之一為視覺系統 (Visual system) 感知到畫面運動,而前庭系統 (Vestibular system) 卻沒接收到移動資訊,產生感知衝突。而色彩是視覺系統感知的一環,且是VR畫面中絕對必要的元素,因此本研究期望了解彩度與視覺動暈症的關聯性,並選擇了色外貌屬性中的彩度作為研究主題。
    本研究進行了三個心理物理學實驗,人數分別為24位、19位、19位。每個實驗中,受測者皆觀看了兩部場景相同僅具有彩度差異的VR影片,並使用SSQ問卷 (Simulator Sickness Questionnaire) 評價影片造成的不適感。實驗一的兩部影片的設定彩度分別為20和100;實驗二為0和100;實驗三為0和100。實驗一至三的影片內容皆是以第一人稱視角遊玩雲霄飛車,實驗一與實驗二影片畫面相同,皆包含藍天及綠地等熟悉物體 (Familiar objects)。實驗三的影片畫面為方塊構成的封閉室內場景,影片內容不包含熟悉物體。
    實驗結果發現不同場景對於彩度導致的動暈症程度具有性別差異。在含有熟悉物體的場景中,女性認為低彩度影片產生的不適感較高,若場景色彩不符合記憶色的認知,可能會提高女性動暈症程度,男性則不受記憶色影響,而女性對於記憶色的敏感性較高可能與男女在辨色能力的差異有關。此外,辨色能力較佳的人似乎傾向於覺得無彩度影片較不適,辨色能力較差的人則認為高彩度影片帶來較高的不適感。上述性別差異亦有可能是影片畫面格式所導致,具有3D視差效果的影片,女性傾向認為低彩度帶來的不適感較高。對於男性,影片是否具有3D視差效果似乎都不會影響到視覺動暈症程度。


    This study explores effects of image chroma of virtual reality (VR) on visually induced motion sickness (VIMS). Many people experience VIMS when using virtual reality. One of the main reasons is that the visual system perceives the movement of the screen, but the vestibular system does not receive the movement information, resulting in perceptual conflicts. Color is a part of visual system perception and an essential element in VR images. Chroma is key to color perception. Therefore, this study aims to investigate the relationship between the chroma of VR images and VIMS.
    Three psychophysical experiments were conducted in this study, with 24, 19, and 19 color-normal observers for Experiments 1, 2 and 3, respectively. In each experiment, the observers watched two VR videos with the same scene but different levels of image chroma. The Simulator Sickness Questionnaire was used to evaluate the discomfort caused by the videos. The target levels of chroma of the two videos were 20 and 100 in Experiment 1, 0 and 100 in Experiment 2, and 0 and 100 in Experiment 3. The VR videos for the three experiments were roller coasters with the first-person view. Experiments 1 and 2 used the same original video, consisting of familiar objects such as blue sky and green grass. The video for Experiment 3 was an indoor scene which did not contain familiar objects.
    According to the experimental results, the strength of VIMS tended to differ between scenes and between genders. When watching the video with familiar objects, female observers tended to feel uncomfortable for low-chroma VR scenes, but this tendency did not occur for males. For scenes without any familiar objects, VIMS for both gender groups didn’t seem to be affected by the level of image chroma. This chroma-dependent VIMS may be induced by the memory colors in VR images and the color discrimination ability of individual observers. That female observers were more prone to VIMS based on memory colours may be due to better color discrimination for females than for males. The gender differences described above may also be caused by the format of the VR video. For 3D VR videos, female observers tended to feel uncomfortable for low-chroma scenes. For male observers, whether the videos were 3D or not did not seem to affect the VIMS.

    摘要 IV ABSTRACT V 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 論文架構 2 第二章 文獻探討 4 2.1 虛擬實境 4 2.2 虛擬實境頭戴式顯示器 5 2.3 動暈症 6 2.3.1 動暈症的定義與分類 6 2.3.2 前庭與視覺系統 7 2.3.3 引發視覺動暈症的理論 13 2.3.4 VR引發視覺動暈症之影響因素 15 2.3.5 動暈症主觀問卷 16 2.3.6 色彩與動暈症之相關研究案例 18 2.4 記憶色與熟悉物體 20 2.5 辨色能力 21 第三章 實驗方法 23 3.1 實驗變項 23 3.2 實驗設備 24 3.3 實驗方法 25 3.3.1 實驗影片 25 3.3.2 主觀問卷 37 3.3.3 實驗流程 38 3.4 實驗環境 40 3.5 實驗受測者 41 3.6 分析方法 43 3.6.1 SSQ問卷計算 43 3.6.2 算術平均數 (Arithmetic mean) 44 3.6.3 信賴區間 (Confidence interval) 44 3.6.4 成對樣本t檢定 (Paired samples t-test) 44 3.6.5 獨立樣本t檢定 (Independent sample t-test) 44 第四章 實驗分析與結果 45 4.1 受測者數據可信度 45 4.2 初步分析 45 4.2.1 實驗一 45 4.2.2 實驗二 46 4.2.3 實驗三 48 4.2.4 初步分析小結 49 4.3 綜合分析 50 4.3.1 暈車易感性分析 50 4.3.2 觀看順序分析 56 4.3.3 性別分析 66 4.3.4 Farnsworth Munsell 100 Hue Test 80 4.4 實驗結果小節 84 4.4.1 影片彩度對動暈症程度的影響 84 4.4.2 暈車易感性對動暈症程度的影響 88 4.4.3 觀看順序對動暈症程度的影響 88 第五章 結論與展望 89 5.1 結論 89 5.2 未來研究建議 90 參考文獻 91 附錄 98 A 實驗一初步分析數據 98 B 實驗二初步分析數據 100 C 實驗三初步分析數據 102 D 總體暈車易感性分析數據 104 E 實驗一暈車易感性分析數據 106 F 實驗二暈車易感性分析數據 107 G 實驗三暈車易感性分析數據 108 H 實驗一觀看順序分析數據 109 I 實驗二觀看順序分析數據 110 J 實驗三觀看順序分析數據 111 K 實驗一性別分析數據 112 L 實驗二性別分析數據 113 M 實驗三性別分析數據 114

    Bonato, F., Bubka, A., and Alfieri, L. (2004). Display color affects motion sickness symptoms in an optokinetic drum. Aviation, Space, and Environmental Medicine, 75(4), 306–311.

    Chattha, U. A., Janjua, U. I., Anwar, F., Madni, T. M., Cheema, M. F., and Janjua S. I. (2020). Motion Sickness in Virtual Reality: An Empirical Evaluation. IEEE Access, 8, 130486-130499.

    Davis, S., Nesbitt, K., and Nalivaiko, E. (2014). A Systematic Review of Cybersickness. Proceedings of the 2014 Conference on Interactive Entertainment, 1-9.

    Draper, M. H., Viire, E. S., Furness, T. A., and Gawron, V. J. (2001). Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Human Factors, 43(1), 129–146.

    Ebenholtz, S. M., Cohen, M. M., and Linder, B. J. (1994). The possible role of nystagmus in motion sickness: a hypothesis. Aviation, Space, and Environmental Medicine, 65(11), 1032–1035.

    Fairchild, M. D. (2005). Color Appearance Model. John Wiley & Sons, Ltd.

    Fisher, R. S., Harding, G., Erba, G., Barkley, G. L., Wilkins, A., and Epilepsy Foundation of America Working Group (2005). Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia, 46(9), 1426–1441.

    Grand View Research市場報告 ( https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market,訪問日期:2022/07/01 )

    Hale, K. S., and Stanney, K. M. (2014). Handbook of virtual environments: Design, implementation, and applications. CRC Press.

    Harwood, K., and Foley, P. (1987). Temporal resolution: an insight into the video display terminal (VDT) "problem". Human Factors, 29(4), 447–452.

    Hering, E. (1964). Outlines of a Theory of the Light Sense. Harvard University Press.

    Hsu, Y. C. (2021). Exploring the Effectiveness of Two Types of Virtual Reality Headsets for Teaching High School Mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 17,1-12.

    Huang, H., Liang, J., Yao, B., and Zhu, G. (2015). Gender Effects on Color Discrimination. Lecture Notes in Electrical Engineering, 369, 153-161.

    Huang, Z., Liu, Q., Liu, Y., Pointer, M., Luo, M., Wang, Q., and Wu, B. (2019). Best lighting for jeans, part 1: Optimising colour preference and colour discrimination with multiple correlated colour temperatures. Lighting Research and Technology, 51(8), 1208–1223.

    Jang, K., Kwon, M., Nam, S. G., Kim, D., and Lim, H. K. (2022). Estimating objective (EEG) and subjective (SSQ) cybersickness in people with susceptibility to motion sickness. Applied Ergonomics, 102, 103731.

    Jerald, J. (2016). The VR Book: Human-centered Design for Virtual Reality. Association for Computing Machinery.

    Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220.

    Kimura, A., Wada, Y., Yang, J., Otsuka, Y., Dan, I., Masuda, T., Kanazawa, S., and Yamaguchi, M. K. (2010). Infants' recognition of objects using canonical color. Journal of Experimental Child Psychology, 105(3), 256–263.

    Keshavarz, B., Riecke, B. E., Hettinger, L. J., and Campos, J. L. (2015). Vection and visually induced motion sickness: how are they related? Frontiers in Psychology, 6(472), 1-11.

    LaViola, J. J. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47-56.

    Livingstone, M. S., and Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. The Journal of Neuroscience : the official journal of the Society for Neuroscience, 7(11), 3416–3468.

    Livingstone, M. S., and Hubel, D. H. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–749.

    Lin, J. W., Duh, B. L., Parker, D. E., Abi-Rached H., and Furness, T. A. (2002). Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. 2002 IEEE Virtual Reality Conference, 164–171.

    Ma, C. H., Huang, H., and Ou, L. C. (2020). A Comparison of Colour Appearance in Virtual Reality Between Different Screen Resolutions. the 5th CIE Symposium on Colour and Visual Appearance, 1-6.

    Ma, C. H., and Ou, L. C. (2019). An Initial Study of Colour Appearance in Virtual Reality. Proceedings of the 29th Quadrennial Session of the CIE, 32-35.

    Mach, E. (1875). Grundlinien Der Lehre Von Den Bewegungsempfindungen. Leipzig, Engelmann.

    McCauley, M. E., and Sharkey, T. J. (1992). Cybersickness: Perception of self-motion in virtual environments. Presence: Teleoperators and Virtual Environments, 1(3), 311-318.

    Moroney, N., Fairchild, M. D., Hunt, R. W., Li, C., Luo, M. R., and Newman, T. (2002). The CIECAM02 color appearance model. Color and Imaging Conference, 2002(1), 23-27.

    Nie, G. Y., Duh, H. B. L., Liu, Y., and Wang, Y. (2019). Analysis on mitigation of visually induced motion sickness by applying dynamical blurring on a user's retina. IEEE transactions on visualization and computer graphics, 26(8), 2535-2545.

    Pausch, R., Crea, T., and Conway, M. (1992). A literature survey for virtual environments: Military flight simulator visual systems and simulator sickness. Presence: Teleoperators and Virtual Environments, 1(3), 344–363.

    Porcino, T. M., Clua, E., Trevisan, D., Vasconcelos, C. N., and Valente, L. (2017). Minimizing cyber sickness in head mounted display systems: Design guidelines and applications. 2017 IEEE 5th International Conference on Serious Games and Applications for Health, 1-6.

    Reason, J. T., and Brand, J. J. (1975). Motion sickness. Academic Press.

    Riccio, G. E., and Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology, 3(3), 195–240.

    Rolland, J. P., Krueger, M. W., and Goon, A. (2000). Multifocal planes head-mounted displays. Applied Optics, 39(19), 3209-3215.

    Salimi, Z., and Ferguson-Pell, M. W. (2021). Motion sickness and sense of presence in a virtual reality environment developed for manual wheelchair users, with three different approaches. Plos One, 16(8), 1-22.

    Seya, Y., Yamaguchi, M., and Shinoda, H. (2015). Single stimulus color can modulate vection. Frontiers in psychology, 6(406), 1-12.

    Smet, K., Ryckaert, W. R., Pointer, M. R., Deconinck, G., and Hanselaer, P. (2011). Colour appearance rating of familiar real objects. Color Research and Application, 36(3), 192-200.

    So, R. H. Y., and Yuen, S. L. (2007). Comparing symptoms of visually induced motion sickness among viewers of four similar virtual environments with different color. International Conference on Virtual Reality, 386-391.

    Stanney, K. M., Kennedy, R. S., and Drexler, J. M. (1997). Cybersickness is not simulator sickness. Proceedings of the Human Factors and Ergonomics Society annual meeting, 41(2), 1138-1142.

    Wu, C. C., and Ou, L. C. (2021). Reference White in a Complex Virtual Reality Environment. Proceedings of the Conference CIE 2021, 362-369.

    Yao, R., Heath, T., Davies, A., Forsyth, T., Mitchell, N., and Hoberman, P. (2013) Oculus VR Best Practices Guide. Oculus VR, Inc.

    Zhan, T., Hsiang, E. L., Zou, J., Xiong, J., Li, K., and Wu, S. T. (2021). Light-Efficient Virtual Reality Displays. SID Symposium Digest of Technical Papers, 52(1), 1246-1249.

    QR CODE