簡易檢索 / 詳目顯示

研究生: 劉品弦
Pin-Hsien Liu
論文名稱: 於慢時域進行格雷解碼之超音波都卜勒影像系統
Slow-time Golay Decoding for Ultrasonic Doppler Imaging System
指導教授: 沈哲州
Che-Chou Shen
口試委員: 廖愛禾
Ai-Ho Liao
王士豪
Shyn-Hau Wang
鄭伯璽
Gen-Cy Jeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 格雷編碼主瓣旁瓣比旁瓣慢時域都卜勒PRF/4濾波器
外文關鍵詞: Golay code, Doppler, slow time, sidelobe, RSLL, PRF/4 filter
相關次數: 點閱:189下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

音波都卜勒影像系統(ultrasonic Doppler imaging system)為利用都卜勒效應計算出血流相對速度,並以影像呈現。為提升其影像信噪比(signal-to-noise ratio),常使用發射時間較長、平均聲壓低的編碼激發(coded excitation)技術,並在接收後藉由解碼壓縮處理一回復空間解析度(spatial resolution)。
在編碼激發波形中,壓縮結果可分為主瓣(mainlobe)與旁瓣(sidelobe)兩部分,旁瓣會造成成像假影而造成流速誤判,其中格雷編碼(Golay code)由於需要多次發射進行壓縮解碼,難以抑制移動觀測物產生的旁瓣假影,因此格雷編碼傳統上被認為不適用於都卜勒影像系統。
在本篇研究中,我們藉由格雷編碼旁瓣在慢時域(slow time)與主瓣相差二分之一脈衝重複頻率(PRF)的都卜勒偏移頻此一特性,設計一PRF/4慢時域濾波器(slow-time filter),以消除格雷編碼產生的旁瓣,達到提升格雷編碼超音波都卜勒影像的成像精確度的效果。
我們將針對中心頻率20 M Hz的格雷編碼波形比較傳統解碼、改良解碼與PRF/4濾波器三種解碼方式並進行分析,結果顯示當血流頻譜的都卜勒偏移頻率在正負四分之一脈衝重複頻率內,在物體移動速度對應至0.115 PRF時,PRF/4濾波器能比傳統解碼多抑制20 dB的主瓣旁瓣比(range sidelobe level),血流仿體都卜勒影像也顯示可減少假影的產生並提升血流估計精確度。


Ultrasonic Doppler imaging system uses Doppler effects to estimate the direction and speed of the blood flow. Golay code can be utilized to improve the SNR in Ultrasonic Doppler imaging system by transmitting long waveforms repeatedly without excess sound pressure. The received echo is decoded for pulse compression to restore its axial resolution. However, sidelobes in the decoded signal will produce the image artifacts and degrade the image quality. Golay code is conventionally assumed to be not applicable in Doppler system because Golay code is hard to suppress sidelobes when the object moves.
In this study, our analyses show that the main lobe component of Golay can produce the correct Doppler frequency but the range side lobe counterpart erroneously shifts by half of the pulse-repetition-frequency (PRF). Based on the spectral difference, an optimized separation between the main lobe and side lobe components can be performed by decoding the received echoes with a low-pass filter whose cut-off frequency is PRF/4 in the slow-time domain. The PRF/4 filter can retain the main lobe component with Doppler frequency within ±PRF/4 while eliminating the side lobe component outside ±PRF/4.
Using a 20 MHz ultrasonic Doppler imaging system, we prove that sidelobes is effectively suppressed by the PRF/4 filter compared to the conventional and the modified methods. In the case of high flow velocity, color-flow imaging with the PRF/4 filter also exhibits accurate estimation of the flow region while the conventional and the modified methods suffer from noticeable side lobe artifacts. In the case of 0.115 Doppler frequency , The PRF/4 filter's range sidelobe level is up to 20 dB lower than the conventional method's. Therefore, the robustness of Golay excitation improves in Doppler detection by using the PRF/4 filter for decoding.

中文摘要 Abstract 致謝 目錄 圖目錄 第一章 緒論 1-1 超音波影像基本原理 1-2超音波都卜勒血流估測 1-2-1 都卜勒血流成像 1-2-2 彩色都卜勒信號處理 1-3 研究動機、目標與論文架構 第二章 格雷編碼於慢時域特性運用 2-1格雷編碼 2-1-1格雷編碼原理與特性 2-1-2格雷編碼應用上缺陷與現有改良 2-1-3 格雷編碼於慢時域特性 2-1-4 慢時域濾波器設計 第三章 研究方法 3-1掃掠式掃描血流成像系統之建立 3-2 實驗架構 3-3-1移動單散射子模擬實驗 3-3-2 都卜勒影像 第四章 研究結果 4-1格雷編碼信噪比改良 4-2移動物RSLL改良 4-3都卜勒影像改良 4-3-1 3mm/s都卜勒影像改良 4-3-2 6mm/s都卜勒影像改良 4-3-3 9mm/s都卜勒影像改良 第五章 討論、結論與未來工作 5-1 討論與結論 5-2 未來研究方向 參考文獻

[1] M. O’Donnell, “Coded excitation system for improving the penetration of real-time phased array imaging systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 39, no. 3, pp. 341–351, 1992.
[2] T. Misaridis and J. Jensen, “Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 2, pp. 177–191, 2005.
[3] M. O’Donnell and Y. Wang, “Coded excitation for synthetic aperture ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 52, no. 2, pp. 171–176, 2005.
[4] R. Y. Chiao and X. H. Hao, “Coded excitation for diagnostic ultrasound: a system developer's perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 10, no. 2, pp. 160–170, 2005.
[5] Y. Takeuchi, “Coded excitation for harmonic imaging,” in Proc. IEEE Ultrasonics Symp., 1996, pp. 1433–1436.
[6] J. Song, S. Kim, H. Y. Sohn, T. K. Song, and Y. M. Yoo, “Coded excitation for ultrasound tissue harmonic imaging,” Ultrasonics, vol. 50, no. 6, pp. 613–619, 2010.
[7] 吳信憲, “非線性組織抑制於低流速血流汁都卜勒偵測”,國立台灣科技大學電機工程學研究所碩士論文
[8] Y. M. Yoo, W. L. Lee, and T. K. Song, “A low voltage portable system using modified Golay sequences,” in Proc. IEEE Ultrason. Symp., 2001, pp. 1469–1472
[9] R. Y. Chiao and L. J. Thomas, “Synthetic aperture imaging with orthogonal Golay coded excitation,” in Proc. IEEE Ultrason. Symp., 2000, pp. 1677–1680
[10] J. Liu and M. F. Insana, “Coded pulse excitation for ultrasonic strain imaging,”IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 2, pp. 231–240,2005.
[11] H. Zhao, L. Y. L. Mo and S. Gao, “Barker-coded ultrasound color flow imaging:Theoretical and practical design considerations,” IEEE Trans. Ultrason.Ferroelectr. Freq. Control, vol. 54, no. 2, pp. 319–331, 2007.
[12] C. Cannon, J. Hannah, S. McLaughlin, " Segmented motion compensation for complementary coded ultrasonic imaging", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 5, pp. 1039-1050, 2010.
[13] F. Gran, J. Udesen, M. B. Nielsen and J. A. Jensen, “Coded ultrasound for Blood flow estimation using subband processing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 10, pp. 2211–2220, 2008.
[14] R. Y. Chiao, “Method and apparatus using golay-coded excitation for echocardiology,” U. S. Patent 6,487,433, 2002.
[15] B. Haider, P. A. Lewin, and K. E. Thomenius, “Pulse elongation and deconvolution filtering for medical ultrasonic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 1, pp. 98–113, 1998.
[16] T. Misaridis and J. Jensen, “Use of modulated excitation signals in medical ultrasound. Part III: High frame rate imaging,” IEEE Trans. Ultrason. Ferroelectr. 20 Freq. Control, vol. 52, no. 2, pp. 208–219, 2005.
[17] A. L. Hall et al., “Method and apparatus for color flow imaging using Golay-coded excitation on transmit and pulse compression on receive,” U. S. Patent 5 6,095,997, 2000.
[18] S . Foster, P. Embree, and W. O’Brien Jr., “Flow velocity profile via time-domain correlation: error analysis and computer simulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 37, no. 3, pp. 164–175, May. 1990.
[19] D. E. Kruse, R. H. Silverman, R. J. Fornaris, D. J. Coleman and K. W. Ferrara,“A swept-scanning mode for estimation of blood velocity in the microvasculature,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 6, pp. 1437–1440, 1998.

QR CODE