簡易檢索 / 詳目顯示

研究生: 張詠捷
Yung-Chieh Chang
論文名稱: 整合修正式模糊DANP之修正式解模糊 MABAC法以及ARAS法與修正式模糊 MABAC法以及ARAS法評選手術燈改善方案與結果差異分析及創新結構設計
Selection of improvement plans for surgical light using the modified defuzzification MABAC and modified defuzzification ARAS and the modified fuzzy MABAC and the modified fuzzy ARAS combined with the modified fuzzy DANP as well as analysis on difference in results and innovative structure design
指導教授: 郭俊良
Chun-Liang Kuo
林榮慶
Zone-Ching Lin
口試委員: 黃佑民
You-min Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 235
中文關鍵詞: 手術燈技術/功能矩陣修正式模糊 DANP修正式Defuzzification MABAC修正式Defuzzification ARAS修正式模糊 MABAC修正式模糊 ARAS修正式TRIZ
外文關鍵詞: surgical light, modified fuzzy DANP, technical/functional matrix, modified defuzzification MABAC, modified defuzzification ARAS, modified fuzzy MABAC, modified fuzzy ARAS, modified TRIZ
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用多屬性決策分析(MADM,Multiple Attribute Decision Making)進行手術燈技術改善過程之評估,結合手術燈相關文獻及相關專利分析探討,改善傳統多屬性決策分析以專家主觀意見為主的問題。本文以工程知識結合專利分析和斷詞斷字系統得出手術燈在技術以及功能領域字群的常態化數值,用以建立技術/功能矩陣。研究方法以改善手術燈之照明範圍與操作便利性問題,使用手術燈之相關文獻及各項專利分析,將手術燈第一層技術領域分為:1.整體支架結構、2.燈罩結構、3.燈具控制技術,再由三項第一層技術領域中,將第二層技術領域分為a. 支撐支架結構技術b. 燈具手把附近結構技術c. 光源佈置及變化技術d. 燈源散熱及氣體流動技術e. 燈源照射範圍及照射技術f. 燈源及電源控制技術六項技術準則。功能領域則分為六項功能準則,分別為:a. 提高操作便利性及穩定性b. 提高散熱性及空氣流動品質c. 降低成本並延長使用壽命d. 改善陰影和眼睛視覺清晰度及減少眼睛疲勞感e. 改善光的均勻性及亮度f. 調節照明範圍。並將第一層技術及功能領域提出之三個技術及功能改善方案結合,成為具有相依性的三個技術以及功能領域改善方案作為評選方案。
    本文並建立整合修正式模糊DANP之修正式解模糊MABAC方法、修正式解模糊ARAS方法以及修正式模糊MABAC方法。對比整合修正式模糊DANP的修正式模糊ARAS方法,得出各自之技術以及功能領域之改善方案,並評選出各自最優先改善方案之結果。
    此外,本文又就整合修正式模糊DANP的修正式模糊MABAC方法,修正式模糊ARAS方法,修正式解模糊MABAC方法,及修正式解模糊ARAS方法,將各自之技術以及功能領域的各三個改善方案之結果進行討論比較。分析結果顯示,模糊方法在大部分情況適用,但某些情況下不適用。因此,在案例分析中應同時以模糊方法與解模糊法各自做出結果,以判斷最優先改善方案。本文進一步分析整合修正式模糊DANP之修正式解模糊 MABAC方法以及修正式解模糊 ARAS方法,分析出方法正規化矩陣之差異,為影響改善方案優先排序之關鍵。最後依多工程步驟的修正式TRIZ創新發明法對最優先改善的方案做改善,並從方案中挑選適當發明法則,依修正式TRIZ步驟提出手術燈創新結構設計。


    This work employs MADM(Multiple Attribute Decision Making) method to select the improvement process of surgical light technology. Combining the analysis and discussion of the related literature of surgical light with the related patents, the paper improves the traditional MADM’s problem of the experts’ subjective opinions. In addition, the developed algorism combines the engineering knowledge with patent analysis and the segmentation system of wording, in order to obtain the technical and functional word groups for the surgical light, which are used to establish a technical-functional matrix. Research methods involving the relevant literature of the surgical lamp and analysis of various patents, divided technical fields into: the overall support structure, lampshade structure, lamp control technology, and six sub-layer technical fields, such as support frame structure technology, technology of the structure near lamp handle, light source layout and light change technology, lamp-source heat dissipation and air flow technology, lamp-source illumination range and illumination technology, and light source and power source control technology. The objectives of the functional groups were for the improvement of operational convenience, lighting efficiency, improve heat dissipation and lifespan. The six functional criteria, namely the enhancement of convenience and stability of operation, heat dissipation and air flow quality, reduction of costs and extension of service life, improvement of shadow effect and visual clarity to the human eyes and reduction of eyestrain, improvement of the uniformity of light and brightness, and adjustment of brightness, were proposed.
    The paper establishes the modified defuzzification MABAC method combining with the modified fuzzy DANP, the modified defuzzification ARAS method combining with the modified fuzzy DANP, as well as the modified fuzzy MABAC method combining with modified fuzzy DANP, the selections of the respective most prioritized improvement plans in technical and functional fields. Besides, based on the modified fuzzy MABAC method combining with the modified fuzzy DANP, the modified fuzzy ARAS method combining with the modified fuzzy DANP, the modified defuzzification MABAC method combining with the modified fuzzy DANP, and the modified defuzzification ARAS method combining with fuzzy DANP, three improvement plans were obtained for the respective technical and functional fields, for comparisons. It is concluded that the fuzzy method is applicable amongst these applications. Furthermore, to analyze the modified Fuzzy DANP combining with modified Defuzzification MABAC method and the modified Fuzzy DANP combining with modified defuzzification ARAS method, would obtain the difference of the normalized matrix Y_ij^* between the modified Defuzzification MABAC method and ARAS method, which is the key to affect the prioritization amongst improvement plans.
    Finally, after the developed modified TRIZ method was validated with multiple engineering steps, improvements of the prioritized plans were presented and discussed. Invention rules and innovative structural design for the surgical light were proposed and reported.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 xi 表目錄 xv 第一章 緒論 1 1.1研究目的及動機 1 1.2文獻回顧 1 1.2.1手術燈相關文獻 1 1.2.2修正式TRIZ相關文獻 1 1.2.3專利分析相關文獻 3 1.2.4 FUZZY DEMATEL結合FUZZY ANP之FUZZY DANP法的相關文獻 3 1.2.5 ARAS方法相關文獻 4 1.2.6 MABAC方法相關文獻 5 第二章 手術燈介紹 9 第三章 修正式TRIZ分群法介紹 13 3.1 TRIZ 理論基礎 13 3.2 修正式TRIZ分群法 15 3.3 修正式分群法TRIZ判讀流程 19 第四章 模糊理論及修正式模糊 DANP之決策程序 22 4.1 模糊集簡介 22 4.1.1 歸屬函數 22 4.1.2 標準交集(Standard Intersection) 23 4.1.3 α-截集(α-cut) 24 4.2 結合FUZZY ANP (模糊分析網路程序法)與FUZZY DEMATEL (模糊決策實驗室分析法)之程序步驟 25 第五章 整合修正式模糊DANP之修正式模糊 MABAC之決策程序步驟 33 5.1 MABAC方法介紹 33 5.2 修正式模糊 MABAC方法介紹 33 5.3 修正式模糊 MABAC決策程序 33 5.4 整合修正式模糊DANP之修正式模糊 MABAC方法之決策程序步驟 35 第六章 整合修正式模糊DANP之修正式模糊 ARAS之決策程序步驟 44 6.1 ARAS方法介紹 44 6.2 修正式模糊 ARAS方法介紹 44 6.3 修正式模糊 ARAS決策程序 44 6.4 整合修正式模糊DANP之修正式模糊 ARAS方法之決策程序步驟 46 第七章 整合修正式模糊DANP之修正式DEFUZZIFICATION MABAC之決策程序步驟 55 7.1 MABAC方法介紹 55 7.2 修正式DEFUZZIFICATION MABAC方法介紹 55 7.3 修正式Defuzzification MABAC決策程序 55 7.4 整合修正式模糊DANP之修正式Defuzzification MABAC方法之決策程序步驟 57 第八章 整合修正式模糊DANP之修正式DEFUZZIFICATION ARAS之決策程序步驟 67 8.1 ARAS方法介紹 67 8.2修正式DEFUZZIFICATION ARAS方法介紹 67 8.3修正式模糊 ARAS方法之決策程序步驟 67 8.4 整合修正式模糊DANP之修正式DEFUZZIFICATION ARAS方法之決策程序步驟 70 第九章 以產品技術整合修正式模糊DANP之修正式模糊 MABAC及整合修正式模糊DANP之修正式DEFUZZIFICATION MABAC評選手術燈優先改良方案 79 9.1利用專利技術字篩選出產品技術之準則 79 9.2建立產品技術的三種手術燈改善設計方案 82 9.3產品技術整合修正式模糊DANP之修正式模糊 MABAC計算手術燈優先改良方案之過程 83 9.4產品技術整合修正式模糊DANP之修正式Defuzzification MABAC計算手術燈優先改良方案之過程 115 第十章 以產品技術整合修正式模糊DANP之修正式模糊 ARAS及整合修正式模糊DANP之修正式DEFUZZIFICATION ARAS評選手術燈優先改良方案 123 10.1產品技術整合修正式模糊DANP之修正式模糊 ARAS計算手術燈優先改良方案之過程 123 10.2產品技術整合修正式模糊DANP之修正式DEFUZZIFICATION ARAS計算手術燈優先改良方案之過程 129 第十一章 以產品功能整合修正式模糊DANP之修正式模糊 MABAC及整合修正式模糊DANP之修正式DEFUZZIFICATION MABAC評選手術燈優先改良方案 136 11.4產品技術整合修正式模糊DANP之修正式Defuzzification MABAC計算手術燈優先改良方案之過程 170 第十二章 以產品功能整合修正式模糊DANP之修正式模糊 ARAS及整合修正式模糊DANP之修正式DEFUZZIFICATION ARAS評選手術燈優先改良方案 178 12.1產品技術整合修正式模糊DANP之修正式模糊 ARAS計算手術燈優先改良方案之過程 178 12.2產品技術整合修正式模糊DANP之修正式DEFUZZIFICATION ARAS計算手術燈優先改良方案之過程 184 第十三章 以模糊方法與解模糊方法評選手術燈產品技術領域及功能領域不同改善方案優先排序的分析探討 191 13.1手術燈技術領域評選結果分析探討 191 13.1.1 技術領域整合修正式模糊DANP之修正式模糊 MABAC和修正式Defuzzification MABAC方法數值分析 192 13.1.2 技術領域整合修正式模糊DANP之修正式模糊 ARAS和修正式Defuzzification ARAS方法數值分析 193 13.2手術燈功能領域評選結果分析探討 196 13.2.1 功能領域整合修正式模糊DANP之修正式模糊 MABAC和修正式Defuzzification MABAC方法數值分析 197 13.2.2 功能領域整合修正式模糊DANP之修正式模糊 ARAS和修正式Defuzzification ARAS方法數值分析 203 13.3 分析探討手術燈功能領域解模糊ARAS方法及解模糊MABAC方法之排序結果 208 13.3.1 以手術燈功能領域的修正式Defuzzification MABAC方法得出之解模糊後之正規化矩陣Yij*帶入修正式DefuzzificationARAS方法 209 13.3.2 以修正式Defuzzification ARAS方法得出之解模糊後之正規化矩陣Yij*帶入修正式Defuzzification MABAC方法 211 13.4手術燈技術領域及功能領域評選結果總結 214 第十四章 手術燈修正式TRIZ創新方案研發過程 217 14.1手術燈技術改善方向之選擇 217 14.2技術改善所選用專利介紹 217 14.3 運用修正式TRIZ在手術燈的技術改良與模擬 219 第十五章 結論 228 參考文獻 230

    [1] 謝其昌、李彥輝及陳勁惟,「手術燈及其LED光源模組」,台灣專利號TWI579495 (2017)。
    [2] 席彩平,「一种手术无影灯」,中國專利號CN104296013 (2015)。
    [3] Goldfire Innovator, http://www.inventionmachine.com/index.htm
    [4] Liu, C. C. and Chen, J. L., “Development of Product Green Innovation Design Method,” Proceedings of EcoDesign : Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, pp.168-173 (2001).
    [5] Liu, C. C. and Chen, J. L., “A TRIZ Inventive Product Design Method without Contradiction Information,” The TRIZ Journal, Paper No. 6 (2001).
    [6] Chang, H. T. and Chen J. L., “An Approach Combining Extension Method with TRIZ for Innovative Product Design,” Journal of the Chinese Society of Mechanical Engineers, Vol.25, pp.13-22 (2004).
    [7] Low, M. T. and Lamvik, K. W. and Myklebust, O., “Manufacturing a Green Service: Engaging the TRIZ Model of Innovation,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, Issue 1, pp.10-17 (2001).
    [8] Chang, H.T. and Chen, J. L., “The Conflict-Problem-Solving CAD Software Integrating TRIZ into Eco-Innovation,” Advances in Engineering Software, Vol.35, Issue 8-9, pp.553-566 (2004).
    [9] Wang, H. and Chen, G. and Lin Z. and Wang, H., “Algorithm of Integrating QFD and TRIZ for the Innovative Design Process,” International Journal of Computer Applications in Technology, Vol.23, Issue 1, pp.41-52 (2005).
    [10] Tong, L. H. and He, C. and Shen, L., “Automatic Classification of Patent Documents for TRIZ Users,” World Patent Information, Vol.28, pp.6-13 (2006).
    [11] Terninko, J., ” The QFD, TRIZ and Taguchi Connection : Customer– Driven Robust Innovation,” The Ninth Symposium on Quality Function Deployment, pp.374-380 (1997).
    [12] Apte, P. R. and Mann, D. L., “Taguchi and TRIZ: Comparisons and Opportunities,” The TRIZ Journal, November, (2001).
    [13] León-Rovira, N. and Aguayo, H., “A new Model of the Conceptual Design Process using QFD/FA/TRIZ,” The TRIZ Journal., July (1998).
    [14] Mann, D. L., “Assessing the Accuracy of the Contradiction Matrix For Recent Mechanical Inventions,” The TRIZ Journal., February (2002).
    [15] Fey, V. and Rivin, E., “Innovation on Demand: New Product Development Using TRIZ,” Cambridge University Press, UK, (2005).
    [16] Savransky, S. D., “Engineering of Creativity –Introduction to TRIZ Methodology of Inventive Problem Solving”, CRC Press, New York, (2000).
    [17] 鄭振興,「利用知識工程技術進行支撐結構設計評估與設計改善之研究」,博士論文,國立台灣科技大學機械工程學系,台北 (2011)。
    [18] 黃浩誠,「應用改良之TRIZ理論結合QFD於補償式化學機械拋光終點偵測及補償路徑之改善」,碩士論文,國立台灣科技大學機械工程學系,台北 (2007)。
    [19] Fontela, E. and Gabus, A., “The DEMATEL observer” Battelle Geneva ResearchCenter, Switzerland Geneva (1976).
    [20] O’Leary, D. E., “Enterprise Knowledge Management” IEEE Computer, Vol.31, pp.54-61 (1998).
    [21] 杜家宏,「整合繁體和簡體中文及英文斷詞斷字系統之發光二極體檯燈專利分析研究」,碩士論文,國立台灣科技大學機械工程學系,台北(2011)。
    [22] Fontela, E. and Gabus, A., “The DEMATEL observer” Battelle Geneva ResearchCenter, Switzerland Geneva (1976).
    [23] Tzeng, G. H. and Chiang, C. H. and Li, C. W., “Evaluating intertwined effects ine-learning programs: A novel hybrid MCDM model based on FactorAnalysis and DEMATEL,” Expert Systems with Applications Vol.32, No4, pp.1028-1044 (2007).
    [24] Lin, C. J. and Wu, W. W., “A Fuzzy Extension of the DEMATEL method for group decision making” 第一屆作業研究學會學術研討會論文集,台北科技大學,台灣 (2004)。
    [25] Tadić, S., Zečević, S., and Krstić, M., “A novel hybrid MCDM model based on fuzzy DEMATEL, fuzzy ANP” Expert Systems with Applications Vol.41, No.18, pp.8112-8128 (2014).
    [26] Ou Yang, Y. P. and Shieh, H. M. and Leu, J. D. and Tzeng, G. H., “A Novel Hybrid MCDM Model Combined with DEMATEL and ANP with Applications”, International Journal of Operations Researc, Vol.5, No.3, pp.1-9 (2008).
    [27] 李杰穎,「以混合多目標決策方法建立永續供應商評估模型」,中原大學工業與系統工程學系,碩士論文,桃園 (2013)。
    [28] Rochimah, S., “Integration of DEMATEL and ANP Methods for Calculate the Weight of Characteristics Software Quality Based Model ISO 9126” Information Technology and Electrical Engineering (ICITEE), pp.143-148, International Conference.(2013).
    [29] Wu, W. W. ,“Choosing knowledge management strategies by using a combined ANP and DEMATEL approach” Expert systems with applications, Vol.35, No.3, pp.828-835 (2008).
    [30] Zavadskas, E. K., and Turskis, Z. “A new additive ratio assessment (ARAS) method in multicriteria decision‐making”, Technological and economic development of economy, Vol.16, No.2, pp.159-172 (2010).
    [31] Martin, N., and Deepak, F.X.E, “Application of New Additive Ratio Assessment (NARAS) Method in Selection of Material for Optimal Design of Engineering Components”, Materials Today: Proceedings, Vol. 11, Part 3, pp. 1049-1053 (2019).
    [32] Zavadskas, E. K., and Antucheviciene, J., and Kalibatas, D. “Achieving Nearly Zero-Energy Buildings by applying multi-attribute assessment”, Energy and Buildings, Vol.143, pp.162-172 (2017).
    [33] Pamucar, D. and Cirovic, G., “The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC)” Expert systems with applications, Vol.42, No.6, pp.3016-3028 (2015).
    [34] Natarajan, H. and Paramasivam, S.S.S.S, and Kumaran, D., and Krishnan, G.S., and Ibrahim, S.S. “Application of MABAC in support of decision-making on the key process variables in sheet metal forming” Materials Today: Proceedings, Vol 47, Part 19, pp. 7140-7144(2021).
    [35] Deveci, M., Erdogan, N., Cali, U., Stekli, J., Zhong, S. “Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA”, Engineering Applications of Artificial Intelligence, Vol.103(2021)
    [36] 陳靖宜,「整合修正式模糊DANP及修正式模糊 WASPAS法於手術燈改善方案之評選與創新結構設計」,碩士論文,國立台灣科技大學機械工程學系,台北 (2021)。
    [37] Liang, J. W., “SURGICAL LAMP HANDLE ASSEMBLY WITH BULIT-IN VIDEO CAMARA” US patent No.US6909465 (2015).
    [38] 梁智偉、鄭志誠與吳偉立,「具有光強度微調功能之手術燈」,台灣專利號TWI601905 (2017)。
    [39] 劉峻豪,「結合專利改良式原創性數值及改良式一般性數值與新專利開法法則進行手術燈相關專利分析」,碩士論文,國立台灣科技大學機械工程學系,台北 (2021)。.
    [40] 王家偉,「應用修正式DANP網路程序分析法於LED自行車燈創新方案優先評選次序及創新設計研究」,國立台灣科技大學機械工程學系,碩士論文,台北 (2015)。
    [41] Lin, Z. C., & Chen, C. C. Innovation Procedure for Polishing Times Calculations of Compensated CMP Using Multiple Steps of the Modified TRIZ Method. International Journal of Innovative Computing, Information and Control, Vol.5, No.8, pp.2311-2332 (2009).
    [42] Altshuller, G., “The 40 Principles” Technical Innovation Center, Inc. Worcester, MA (1997).
    [43] 黃志銘,「LED水族燈之結構與散熱改良研究」,碩士論文,國立台灣科技大學機械工程學系,台北 (2012)。
    [44] 林宗翰,「建立整合修正式模糊DANP之修正式模糊 VIKOR法並應用於牙科燈改善方案評選及改善設計」,碩士論文,國立台灣科技大學機械工程學系,台北 (2019)。
    [45] Zadeh, L. A., “Fuzzy Sets,” Information and Control, Vol.8, pp.338-353 (1965).
    [46] 李允中、王小璠與蘇木春,「模糊理論及其應用」,全華圖書,台北 (2012)。
    [47] 萬絢、林明毅與陳宏杰,「模糊理論應用與實務」,儒林圖書,台北 (2006)。
    [48] Saaty, T. L., “Decision making for leaders: the analytic hierarchy process for decisions in a complex world” RWS publications (1990).
    [49] Han, W. M. and Hsu, C. H. and Yeh, C. Y., “Using DEMATEL to Analyze the Quality Characteristics of Mobile Applications,” Proceedings of the 2014 International Conference on Future Information Engineering and Manufacturing Science, pp.131-134. (2014).
    [50] 王文俊,「認識Fuzzy理論與應用」,全華圖書,台北 (2020)。
    [51] 邱靖,「整合修正式模糊DANP及修正式模糊 ARAS法於手術燈改善方案之評選與創新結構設計」,碩士論文,國立台灣科技大學機械工程學系,台北 (2021)。
    [52] Harendra Kumar, “Some Recent Defuzzification Method”, Gurukula Kangari University, India (2017).
    [53] 王冠能,「手術燈」,台灣專利號TWI656302B (2018)。

    無法下載圖示 全文公開日期 2024/09/06 (校內網路)
    全文公開日期 2027/09/06 (校外網路)
    全文公開日期 2027/09/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE