簡易檢索 / 詳目顯示

研究生: 蔡欣憲
Hsin-Hsien Tsai
論文名稱: 以Fe2O3/Al2O3複合載氧體於移動床燃料反應器應用化學迴圈程序處理生質廢棄物
Chemical Looping Process of Biomass Combustion with Fe2O3/Al2O3 Oxygen Carrier by Moving Bed Fuel Reactor
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾堯宣
Yao-Hsuan Tseng
郭俞麟
Yu-Lin Kuo
曾迪華
Dyi-Hwa Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 147
中文關鍵詞: 化學迴圈程序生質物燃燒移動床燃料反應器二氧化碳
外文關鍵詞: Chemical looping process, Biomass combustion, Moving bed fuel reactor, Carbon dioxide
相關次數: 點閱:347下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之主要目的為以氧化鐵載氧體於移動床燃料反應器應用化學迴圈程序處理生質廢棄物之可行性分析。選用生質廢棄物為稻殼、稻殼混合木屑及稻殼混合木炭作為燃料,經由分析生質物物理與化學之特性,了解其熱穩定性、熱值、固定碳、揮發物組成與固體流動性質,做為移動床進料器設計與燃燒反應之依據。本研究利用氣動輸送器來輸送生質物,可避免在輸送過程中生質物裂解而堵塞進料口。使用CO2與H2O作為氣化氣體進行空床氣化實驗,於不同反應溫度、固體進料速率、蒸氣生質比的條件下討論對於CO及H2 組成含量的結果,藉由空床實驗找到適當操作條件。最後以移動床式化學迴圈反應器對稻殼、稻殼混合木屑及稻殼混合木炭與不同流速下的載氧體進行燃燒反應,並找出適當的燃料需氧參數,可完全將生質燃料轉換為二氧化碳與水,達到良好的處理的效果,作為未來應用於處理農業廢棄物的系統放大之參考。在12小時連續燃燒試驗過程中,本研究所製備的Fe2O3/Al2O3複合載氧體展現出良好的還原能力,無凝結團聚現象產生,且具有迴圈能力,為生物質化學迴圈燃燒程序中理想的載氧體。


Utilization of biomass as fuel in chemical looping process is a strong candidate for using this renewable resource to achieve a higher energy conversion efficiency as well as CO2 capture. The purpose of this study is to investigate the agriculture waste of rice husk, rice husk/sawdust blended and rice husk/coal blended were used as fuels combustion with Fe2O3/Al2O3 oxygen carrier in moving bed fuel reactor.
Experiments on the chemical looping combustion of biomass, understanding of the physical and the chemical properties of biomass feedstock is essential for the design of a biomass reactor and gasification. Biomass fed into the reactor by pneumatic feeder, controlled carrier gas push the biomass into the gasifier, avoiding pyrolysis of feed in the gasifier feed line. The biomass gasification experiments were used rice husk, rice husk/sawdust blended and rice husk/coal blended at different temperature, biomass fuel rate and steam to biomass ratio (S/B) to gain high quality syngas produce from the gasification system and determined the better conduction to operate at moving bed fuel reactor for biomass combustion. The combustion of biomass was successfully carried out in the moving bed fuel reactor. 100% of carbon dioxide yield was reached.
SEM analysis verified that the Fe2O3/Al2O3 oxygen carrier particles maintained the particle size and that no agglomeration was observed for total 12 hour test. The formation of FeO and FeAl2O4 indicated that further utilization of oxygen in iron-based oxygen carriers can be achieved by moving bed operation.

Chinese Abstract I English Abstract III Acknowledgments V Table of Contents VII List of Figures XI List of Tables XVII List of Symbols XIX Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 3 Chapter 2 Literature and Review 5 2.1 Biomass and Biomass Energy 5 2.1.1 Definition of Biomass and Biomass Sources 5 2.1.2 The Properties of Biomass 6 2.1.3 Information of Biomass Source in Taiwan 9 2.1.4 Current Biomass Energy Conversion Application 11 2.2 Chemical Looping Process 16 2.2.1 Fundamentals of Chemical Looping process 16 2.2.2 Application of Gaseous Fuels in Chemical Looping Process 18 2.2.3 Application of Solid Fuels in Chemical Looping Process 26 2.3 Application of the Biomass as Fuels in Chemical Looping Process 38 2.3.1 Reaction mechanism of Biomass in Chemical Looping process 38 2.3.2 Effect of Fuel Reactor Temperature 40 2.3.3 Effect of Gasification Reactants 42 2.3.4 Issue of Biomass Properties in Chemical Looping Process 45 Chapter 3 Experimental Procedures and Apparatus 47 3.1 Experiment Framework 47 3.2 Materials 49 3.3 Apparatus and Instrument 50 3.3.1 Chemical Looping Process System 51 3.4 Experimental Produces 62 3.4.1 Preparation of Fe2O3/Al2O3as Oxygen Carrier 62 3.4.2 Characterization Analysis of Fe2O3/Al2O3 the Oxygen Carrier 63 3.4.3 TGA analysis of Oxygen Carriers 64 3.4.4 Method of Analysis Biomass Feedstock 67 3.4.5 Experimental Procedure of Biomass Gasification 70 3.4.6 Set-up and Operated Moving Bed Reactor 71 3.4.7 Data Evaluation Method 72 Chapter 4 Results and Discussion 76 4.1 Characteristics of Biomass 77 4.1.1 Physical Properties of Biomass 79 4.1.2 Proximate, Ultimate Analysis and Heat Value of Biomass Sample 81 4.1.3 Thermal Stability and Pyrolysis of Biomass Sample 85 4.2 Combustion of Rice Husk with Fe2O3/Al2O3 Oxygen Carrier in a Moving Bed Fuel Reactor 88 4.2.1 Effect of Reaction Temperature 88 4.2.2 Effect of Biomass Fuel Rate 91 4.2.3 Effect of Gasification Reactants 93 4.2.4 Effect of Oxygen Carrier to Fuel Ratio 96 4.2.5 Characterization of Fe2O3/Al2O3 Composite Oxygen Carrier 99 4.3 Combustion of Rice Husk/Sawdust with Fe2O3/Al2O3 Oxygen Carrier in a Moving Bed Fuel Reactor 103 4.3.1 Effect of Reaction Temperature 103 4.3.2 Effect of Biomass Fuel Rate 106 4.3.3 Effect of Gasification Reactants 108 4.3.4 Effect of Oxygen Carrier to Fuel Ratio 111 4.3.5 Characterization of Fe2O3/Al2O3 Composite Oxygen Carrier 114 4.4 Combustion of Rice Husk/Coal with Fe2O3/Al2O3 Oxygen Carrier in a Moving Bed Fuel Reactor 118 4.4.1 Effect of Reaction Temperature 118 4.4.2 Effect of Biomass Fuel Rate 121 4.4.3 Effect of Gasification Reactants 123 4.4.4 Effect of Oxygen Carrier to Fuel Ratio 126 4.4.5 Characterization of Fe2O3/Al2O3 Composite Oxygen Carrier 129 Chapter 5 Conclusions and Recommendations 133 Reference 136 Appendix 144

Adanez, J., De Diego, L.F., Garcia-Labiano, F. Gayan, P., Abad, A. And Palacios, J.M. “Selection of Oxygen Carrier for Chemical-Looping Combustion,” Energy Fuels, Vol.18, pp 371-377 (2004).
Adanez, J., Gayan, P., Celaya, J., de Diego, L., Garcia-Labiano, F. and Abad, A. “Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion,” Ind. Eng. Chem. Res.,Vol. 45, pp. 6075-6080 (2006).
Adanez, J., Dueso, C., De Diego, L.F., Garcia-Labiano, F., Gayan, P. and Abad A. “Effect of Fuel Gas Composition in Chemical Looping Combustion with Ni-Based Oxygen Carriers. 2. Fate of Light Hydrocarbons,” Ind. Eng. Chem. Res.,Vol. 48, pp. 2509-2518 (2009).
Adanez, J., Abad, A., Garcia-Labiano, F., Gayan P. and de Diego, L.F. “Progress in Chemical-Looping Combustion and Reforming Technologies,” Prog. Energy Combust. Sci., Vol. 38, pp. 215-282 (2012).
Abad A., Mattisson, T., Lyngfelt, A. and Ryden, M. “ Chemical Looping Combustion in a 300 W Continuously Operating Reactor System Using a Manganese-Based Oxygen Carrier,” Fuel, Vol. 85, pp. 1174-1185 (2006).
Berguerand, N. and Lyngfelt, A. “Design and Operation of a 10 kWth Chemical Looping Combustor for Solid Fuels – Testing with South African Coal,” Fuel Vol. 87, 2713-2726 (2008).
Bayham, S.C., Kim, H.R., Wang, D., Tong, A., Zeng, L., McGiveron, O., Kathe, M. V., Chung, E., Wang, W., Wang, A., Majumder, A. and Fan, L. H. “Iron-Based Coal Direct Chemical Looping Combustion Process: 200‑h Continuous Operation of a 25-kWth Subpilot Unit” Energy Fuels, Vol. 27, pp. 1347-1356 (2013).
Cao, Y. and Pan W.P. “Investigation of Chemical Looping Combustion by Solid Fuels. 1. Process Analysis,” Energy Fuels, Vol. 20, pp.1836-1844 (2006).
Dornburg, V. and Faaij, A., “Efficiency and Economy of Wood-Fired Biomass Energy Systems in Relation to Scale Regarding Heat and Power Generation Using Combustion and Gasification Technologies,” Biomass Bioenerg. Vol. 21, pp. 91-108 (2001).
Demirbas, A. “Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues,” Prog. Energy Combust. Sci., Vol. 31, pp.171-92 (2005).
Fan, L.S., “Chemical Looping Systems for Fossil Energy Conversions,” New York: John Wiley & Sons, Inc. (2010).
Friedl, A., Padouvas, E., Rotter, H. and Varmuza K. “Prediction of Heating Values of Biomass Fuel From Elemental Composition,”Anal. Chim. Acta. , Vol. 544, pp. 191-198 (2005).
Gu, H., Shen, L. H., Xiao, J., Zhang, S. and Song, T. “Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor” Energy Fuels, Vol. 25, pp.446-455 (2011).
Ishida, M., Zheng, D. and Akehata, T. “Evaluation of a Chemical-Looping Combustion Power-Generation System by Graphic Energy Analysis,” Energy, Vol.12, pp.147-154 (1987).
International Energy Agency, Bioenergy Annual report, (2012).
Intergovernmental Panel on Climate Change, “Renewable Energy Sources and Climate Change Mitigation, Special Report of the Intergovernmental Panel on Climate Change,” (2011).
Johansson, E., Mattisson, T., Lyngfelt, A. and Thunman, H. (2006) “A 300 W Laboratory Reactor System for Chemical Looping Combustion with Particle Circulation,” Fuel, Vol.85, pp. 1428-1438 (2006).
Kolbitsch, P., Proll, T., Bolhar-Nordenkampf, J. and Hofbauer, H. “Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit,” Energy Procedia 1, Vol. 1, pp. 1465-1472 (2009a).
Kolbitsch, P., Proll, T., Bolhar-Nordenkampf, J. and Hofbauer H. “Design of a Chemical Looping Combustor Using a Dual Circulating Fluidized Bed Reactor System,” Chem. Eng. Technol.Vol. 32, pp. 398-403 (2009).
Kobayashi, N. and Fan, L.S., “Biomass Direct Chemical Looping Process: A Perspective,” Biomass Bioenerg. Vol. 35, pp. 1252-1262 (2011).
Ku, Y., Wu, H.C., Chiu, P.C, Tseng, Y.H and Kuo, Y.L. “Methane Combustion by Moving Bed Fuel Reactor with Fe2O3/Al2O3 Oxygen Carriers,” (2013).
Lewis, W.K. and Gilliland, E.R. “Production of Pure Carbon Dioxide,” U.S. Patent 2,665,972 (1954).
Lyngfelt, A., Leckner, B. and Mattisson, T. “A Fluidized-Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion,” Chem. Eng. Sci., Vol. 56, pp. 3101-3113 (2001).
Lyngfelt, A., Kronberger, B., Adanez, J., Morin, J.-X. and Hurst, P. “The GRACE Project. Development of Oxygen Carrier Particles for Chemical Looping Combustion. Design and Operation of a 10 kW Chemical Looping Combustor,” 7th Int. Conf. Greenhouse Gas Control Technologies, pp. 115-123 (2004).
Linderholm, C., Abad, A., Mattisson, T. and Lyngfelt, A. “160 Hours of Chemical Looping Combustion in a 10 kW Reactor System with a NiO-Based Oxygen Carrier,” Int. J. Greenhouse Gas Control, Vol. 2, pp. 520-530 (2008).
Linderholm, C., Mattisson, T. and Lyngfelt, A. “Long-Term Integrity Testing of Spray-Dried Particles in a 10 kW Chemical Looping Combustor Using Natural Gas as Fuel,” Fuel,Vol 88, pp. 2083-2096 (2009).
Li, F., Liang, Z. and Fan, L.S., “Biomass Direct Chemical Looping Process: Process Simulation,” Fuel, Vol. 89, pp. 3773-3784 (2010).
McKendry, P., “Energy Production From Biomass (Part 1): Overview of Biomass,” Bioresour. Technol., Vol. 83, pp. 37-46 (2002a).
McKendry, P., “Energy Production From Biomass (part 2): Conversion Technologies,” Bioresour. Technol., Vol. 83, pp. 47-54 (2002b).
McKendry, P., “Energy Production From Biomass (part 3): Gasification Technologies,” Bioresour. Technol., Vol. 83, pp. 55-63 (2002c).
Mattisson, T., Johansson, M. and Lyngfelt, A. “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles Application to Chemical-Looping Combustion,” Energy Fuels, Vol. 18, pp. 628-637 (2004).
Mohammad, M.H., de Lasa, H.I. “Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—a Review,” Chem. Eng. Sci., Vol. 63, pp. 4431-4451 (2008).
Moldenhauer, P., Ryden, M. and Lyngfelt, A. “Testing of Minerals and Industrial By-Products as Oxygen Carriers for Chemical Looping Combustion in a Circulating 300 W Laboratory Reactor,” Fuel, Vol. 93, pp. 351-363 (2010).
Proll, T., Kolbitsch, P., Bolhar-Nordenkampf, J. and Hofbauer, H. “A Novel Dual Circulating Fluidized Bed System for Chemical Looping Processes,” AIChE J. Vol. 55, pp. 3255-3266 (2009).
Prabir, B., “Biomass Gasification and Pyrolysis-Practical Design,” Elsevier Inc. (2010).
Richter, H. J. and Knoche, K. F. “Reversibility of Combustion Process,” Efficiency and Costing, ACS Symposium Series 235, Washington, D.C., 71-86 (1983).
Ryu, H. J., Jin, G.T. and Yi, C. K. “Demonstration of Inherent CO2 Separation and No NOx Emission in a 50 kW Chemical Looping Combustor: Continuous Reduction and Oxidation Experiment,” 7th Int Conf Greenhouse Gas Control Technologies, pp. 1907-1910. (2004).
Ryu, H. J., Park, Y. C., Jo, S. H. and Park, M. H. “Demonstration of Novel Two-Interconnected Fluidized Bed System,” Korean J. Chem. Eng.,Vol. 25, pp. 1907-1910. (2008).
Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S. and Mekhilef, S., “A Review on Biomass as a Fuel for Boilers,” Renew. Sust. Energ. Rev., Vol. 15, pp. 2262-2289 (2011).
Son, S. R. and Kim, S. D. “Chemical Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops,” Ind. Eng. Chem. Res. Vol. 45, pp. 2689-2696 (2006).
Sridhar, D., Tong, A., Kim, H., Zeng, L., Li, F. and Fan, L.S. “Syngas Chemical Looping Process: Design and Construction of a 25 kWth Subpilot Unit,” Energy Fuels, Vol. 26, pp. 2292-2302 (2012).
Shen, L. H., Wu, J., Xiao, J., Song, Q. and Xiao, R. “Chemical-Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide as an Oxygen Carrier,” Energy Fuel, Vol. 23, pp. 2498-2505 (2009).
Song, T., Shen, T., Shen, L. H., Xiao, J., Gu, H.M. and Zhang, S. “Evaluation of Hematite Oxygen Carrier in Chemical-Looping Combustion of Coal,” Fuel, Vol. 104, pp. 244-252 (2012).
Stahl, R., Henrich, E., Gehrmann, H. J., Vodegel, S. and Koch, M. “Definition of a standard biomass,” Renewable fuels for advanced power trains (2006).
Sanchez-Silva, L., Lopez-Gonzalez, D., Villasenor, J., Sanchez, P. and Valverde, J.L. “Thermogravimetric–Mass Spectrometric Analysis of Lignocellulosic and Marine Biomass Pyrolysis,” Bioresour. Thechnol., Vol. 109, pp. 163-172 (2012).
Tong, A., Sridhar, D., Sun, Z., Kim, H. R., Zeng, L. Wang, F., Wang, D. Kathe, M. V. Luo, S., Sun, Y. and Fan, L. S. "Continuous High Purity Hydrogen Generation From a Syngas Chemical Looping 25 kWth Sub-Pilot Unit With 100% Carbon Capture” Fuel, Vol. 103, pp. 495-505 (2013).
Wu, J., Shen, L. H., Xiao, J., Wang, L. and Hao, J. G. “Chemical Looping Combustion of Sawdust in a 10 kWth Interconnected Fluidized Bed,” CISC, Vol. 60, pp.2080-2088 (2009).
Yu, Z., Li, C., Fang, Y., Huang, J. and Wang, Z. “Reduction Rate Enhancements for Coal Direct Chemical Looping Combustion with an Iron Oxide Oxygen Carrier,” Energy Fuels., Vol.26, pp 2505-2511 (2012).
Yang, W.C., “Handbook of Fluidization and Fluid-Particle Systems,” New York: Marcel Dekker, Inc. (2003).
經濟部能源局,“ 2010年能源統計手冊”,(2011)
中興工程顧問公司,“高效能生質氣化試驗設施建造評估規劃計畫”,行政院環保署(2010)

無法下載圖示 全文公開日期 2018/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE