簡易檢索 / 詳目顯示

研究生: 王志哲
Jhih-jhe Wang
論文名稱: 單相交流/交流功因校正電路的研製
Implementation of a Single-phase AC/AC Power Factor Correction Circuit
指導教授: 劉添華
Tian-Hua Liu
口試委員: 劉益華
Yi-Hua Liu
李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 功因校正交流/交流轉換器數位訊號處理器
外文關鍵詞: power factor correction, ac/ac converter, digital signal processor
相關次數: 點閱:274下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文研製一部具有功因校正的單相SEPIC交流/交流轉換器,硬體電路主要以雙向開關切換達成交流/交流轉換,並使用數位訊號處理器TMS320F2808為核心,藉由電壓及電流的迴授達成前饋與閉迴路控制,以提供穩定的輸出電壓及提高輸入側的功因。本文針對相關原理及設計方法進行探討,完成一部輸出交流110伏特,最大功率150瓦,功率因數0.98以上的單相交流/交流功因校正電路。實測結果與理論分析相當接近,說明本文所提方法的可行性及正確性。


The thesis studies a single-phase, SEPIC based, ac/ac power factor corrector. The hardware is implemented by using bi-directional semiconductor switches to achieve ac/ac conversion. In addition, a digital signal processor, TMS320F2808, is used as a control center. By using the voltage and current feedback and the feed-forward control method, a fixed output ac voltage with high input power factor can be obtained. The basic principle and design method are discussed. A single-phase ac/ac power factor corrector circuit with 110V, 150W, 0.98 power factor has been implemented. Experimental results can validate the theoretical analysis to show the feasibility and correctness of the proposed methods.

摘要 I Abstract II 目錄 III 圖目錄 VI 符號索引 XI 第一章 緒論 1 1.1背景 1 1.2文獻回顧 2 1.3大綱 4 第二章 功因校正介紹 5 2.1功因的定義 5 2.2功因校正電路 10 2.2.1被動式功因校正電路 10 2.2.2主動式功因校正電路 10 2.2.2.1不連續電流導通模式 11 2.2.2.2連續電流導通模式 12 2.2.2.3邊界導通模式 14 2.3交流/交流功因校正電路 15 第三章 SEPIC電路分析 17 3.1 SEPIC轉換器 17 3.2 不連續導通模式SEPIC轉換器 19 3.3連續導通模式SEPIC轉換器 24 3.4雙向開關介紹 27 3.5交流/交流SEPIC轉換器介紹 29 3.5.1正半週區間切換模式 29 3.5.2負半週區間切換模式 31 3.6開關切換保護 33 第四章 功因校正迴路 34 4.1交流/交流SEPIC功因校正迴路 34 4.2前饋補償電壓 36 4.3電壓控制迴路 39 4.4電流控制迴路 42 第五章 系統研製 44 5.1簡介 44 5.2 功率級電路設計 46 5.2.1電感L1及L2設計 46 5.2.2電容C1設計 48 5.2.3輸出電容C2設計 49 5.2.4功率開關及功率二極體的選擇 50 5.3 迴授電路設計 51 5.3.1電壓迴授電路 51 5.3.2電流迴授電路 54 5.3.3零點偵測電路 55 5.4驅動電路設計 56 5.5輔助電源電路 57 第六章 軟體程式 58 6.1簡介 58 6.2軟體程式設計 60 6.2.1主程式 60 6.2.2中斷服務程式 62 第七章 模擬與實測 68 7.1簡介 68 7.2模擬與實測 68 第八章 結論與建議 93 參考文獻 94 作者簡介 98

[1]A. Prodic, J. Chen, D. Maksimovic, and R. W. Erickson, “Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 420-428, January 2003.
[2]J. Sun, “Input impedance analysis of single-phase PFC converters,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 308-314, March 2005.
[3]K. D. Gusseme, W. R. Ryckaert, D. M. V. Sype, J. A. Ghijeslen, J. A. Melkebeek, and L. Vandevelde, “A boost PFC converter with programmable harmonic resistance,” IEEE Trans. Ind. Appl.vol. 43, no. 3, pp. 742-750, May/June 2007.
[4]E. C. Servetas and A. V. Vlachakis, “A new ac voltage regulator using thyristors,” IEEE Trans, Ind. Electron., vol.28, no. 2, pp. 140-145. May 1981.
[5]S. Williamson, “Reduction of the voltage and current harmonics introduced by a single-phase triac AC controller, by means of shunt resistance,” IEEE Trans, Ind. Electron., vol.28, no. 4, pp. 266-272 Nov. 1981.
[6]T. G . Habetler and D. Divan, “Angle controlled current regulated rectifiers for AC/AC converters,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 463-469, Jul. 1997.
[7]G. H. Choe, A. K. Wallace, and M. H. Park, “An improved PWM technique for AC choppers,” IEEE Trans. Power Electron., vol. 4, no. 4, pp.496-505, Oct. 1989.
[8]J. H. Youm and B. H. Kon, “Switching technique for current-controlled AC-to-AC converter,” IEEE Trans, Ind. Electron., vol. 46, no. 2, pp.309-318, Apr. 1999.
[9]D. H. Jang and G. H. Choe, “Improvement of input power factor in AC choppers using asymmetrical PWM technique,” IEEE Trans, Ind. Electron., vol. 42, no. 2, pp.179-185, Apr. 1995.
[10]A. V. Anunciada and M. M. Silva, “A new current mode control process and applications,” IEEE Trans. Power Electron., vol. 6, no. 4, pp. 601-610, Oct. 1991.
[11]P. N. Enjeti and S. Choi, “An approach to realize higher power PWM AC controller” IEEE APEC, pp. 323-327, Mar. 1993.
[12]Z. Fedyczak, R. Strzelecki, and G. Benysek, “Single phase PWM AC/AC semiconductor transformer topologies and applications”, IEEE PESC-2002, vol. 2, pp. 1048-1053, 2002.
[13]F. D. Dantas and C. A. Canesin, “A novel high frequency AC voltage regulator with active power factor correction”, IEEE ISIE-2003, vol. 1, pp. 275-279, June 2003.
[14]F. D. Dantas and C. A. Canesin, “An AC voltage regulator with high-power-factor and control using a FPGA device” IEEE IECON-2005, pp. 6-10, Nov. 2005.
[15]S. Manias, P. D. Ziogas, and G . Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Ind. Appl. vol. IA-22, no. 6, pp. 1073-1081, Nov. 1986.
[16]B. Yant and M. K. Kazimierczuk, “Modeling the closed-current loop of PWM boost DC-DC converters operating in CCM with peak current-mode control, ” IEEE Transactions on Circuits and Systems, vol. 52, no. 11, pp. 2404-2412, Nov. 2005.
[17]W. Zhang, G . Feng, Y. F. Liu, and B. Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Trans. Power Electron., vol. 19 no. 6, pp. 1474-1485, Nov. 2004.
[18]C. S. Moo, H. L. Cheng, and P. H. Lin, “Parallel operation of modular power factor correction circuits,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 398-403, May 2002.
[19]K. H. Liu and Y. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” IEEE PESC-1989, vol. 2, pp. 825-829, June 26-29, 1989.
[20]Z. Z. Ye and M. M. Jovanovic, “Implementation and performance evaluation of DSP-based control for constant-frequency discontinuous-conduction-mode boost PFC front end,” IEEE Trans, Ind. Electron., vol. 52, no. 1, pp. 98-107, Feb. 2005.
[21]M. Gotfryd, “Output voltage and power limits in boost power factor corrector operating in discontinuous inductor current mode,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 51-57 Jan. 2000.
[22]V. Leonavicius and M. Duffy, “Comparison of realization techniques for PFC inductor operating in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 531-541, March 2004.
[23]R. Redl and B. P. Erisman, “Reducing distortion in peak-current-controlled boost power-factor correctors,” IEEE APEC-1994, vol. 2, pp. 576-583, Feb. 13-17, 1994.
[24]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” IEEE PESC-1990, pp. 800-807, 1990.
[25]R. Real, and A. S. Kislovski, “Source impedance and current-control loop interaction in high-frequency power-factor correctors,” IEEE PESC-1992, vol. 1, pp.483-488, Jul. 1992.
[26]W. Tang, F. C. Lee and R. B. Ridley, “Small-Signal modeling of average current-mode control,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 112-119, Apr. 1993.
[27]P. Cooke, “Modeling average current mode control,” IEEE APEC-2000, pp. 256-262, Feb. 2000.
[28]精致電能應用研究中心(EPARC),電力電子學綜論,全華圖書2007。
[29]李永生,全數位化矩陣轉換器驅動之永磁同步電動機系統的研製,國立臺灣科技大學電機工程系,碩士論文2008。
[30]R. W. Erickson and D. Maksimoric, Fundamentals of Power Electronics, Kluwer Academic Publishers, 1999.
[31]D. S. L. Simonetti, “The discontinuous conduction mode Sepic and Cuk power factor preregulators: analysis and design,” IEEE Trans, Ind. Electron., vol. 44, pp.630-637, Oct.1997.

無法下載圖示 全文公開日期 2018/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE