簡易檢索 / 詳目顯示

研究生: 吳建燁
JIUAN-YE WU
論文名稱: 專案實獲完工工期推論模式之研究
Earned Schedule Inference Model for Construction Project
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 姚乃嘉
Nie-Jia Yau
黃榮堯
Rong-Yau Huang
廖國偉
Kuo-Wei Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 工期預測實獲值管理SOS-LSSVM
外文關鍵詞: Prediction, Duration, Earned Value Management, SOS-LSSVM
相關次數: 點閱:255下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

施工過程中,受限於環境、天氣等眾多因素影響,造成完工工期經常難以準確掌控,施工單位在預測工期時,必須仰賴過去之經驗,無法即時反映影響工期之因素並利用工程現況客觀地預測完工工期。而本研究之專案實獲完工工期推論模式是基於專案的實獲值管理(Earned Value Management, EVM)績效與影響工期的因子對專案的工期進行預測,可作為一個預警參數,經由準確的預測結果,專案管理者可以針對時程採取適宜的管理,設法改善並避免問題的發生。
本研究透過案例學習發展建立專案實獲完工工期推論模式,首先整理相關文獻,並利用影響圖和因子篩選表來彙整工期影響因子,再結合實獲值管理和實獲時程法(Earned Schedule Method, ESM)之績效指標,確立輸入變數並建立案例資料庫,作為完工工期推論模式之基礎。接著應用 Symbiotic Organisms Search - Least Squares Support Machine(SOS-LSSVM)[1]為推論模式之核心,學習歷史案例,找出每期輸入變數與待完工成本之間的映射關係,進而計算預估完工工期(Estimate Schedule At Completion, ESAC)。藉此作為施工過程中作為時程管控的參考依據,以達到提前預警的目的。
本研究之專案完工工期推論模式,其預測結果為高精確、高相關且變異性小而穩定,經由結果比較後,證實可提供較其他人工智慧模式或實獲值公式更佳的預測準確率,以協助管理者進行時程之管控。


Due to the Restriction by many factors like the environment, weather, and etc., it is difficult to control the schedule accurately during the execution phase. Contractors rely on the past experience to predict the duration which cannot reflect the influence factors and use the current situation in time. In this research, the Earned Schedule Inference Model used the earned value management (EVM) and influence factors of schedule to predict the duration for construction project. Through a precise prediction of project duration, the project manager can take control of schedule in order to avoid problems.
This research established the Earned Schedule Inference Model by learning the historical cases. First, the related references was collected and then the influence diagram and the filter diagram were used to figure out the influence factors of project duration. The next step is to combine them with the index of EVM and Earned Schedule Method (ESM). Furthermore, the input and the output variables were identified to establish the database of historical cases which is the base of the model. Second, the Symbiotic Organisms Search - Least Squares Support Machine (SOS-LSSVM) was applied to the model as its main core in order to discover the relationship between the input (influence factors and EVM) , and the output variables (Estimate Schedule to Completion, ESTC) which can be used to calculate to the Estimate Schedule at Completion (ESAC). With the established duration project model, the manager can control the schedule during the execution phase.
The obtained results show that this research can provide a highly accurate and stable forecasting. By comparing the results with those of the other Artificial Intelligence (AI) methods and formulas of EVM, it is confirmed that the Earned Schedule Inference Model has a better ability of predicting the duration in order to help schedule control.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究內容與流程 4 1.5 論文架構 7 1.6 預期成果 8 第二章 文獻回顧 9 2.1實獲值管理(Earned Value Management, EVM) 9 2.1.1 EVM預測完工工期 12 2.2預測工期之方法 17 2.3影響工期之因素 18 2.4人工智慧 23 2.4.1倒傳遞類神經網路(BPNN) 23 2.4.2支持向量機(SVM) 25 2.4.3最小平方差支持向量機(LS-SVM) 27 2.4.4 演化式支持向量機推論模式(ESIM) 29 2.4.5演化式最小平方差支持向量機(ELSIM) 30 2.4.4 Symbiotic Organisms Search–LSSVM(SOS-LSSVM) 31 第三章 專案實獲完工工期推論模式 36 3.1建立推論模式流程 36 3.2確立初步影響因子 38 3.3確立因子輸入變數及輸出變數 41 3.3.1輸入變數 41 3.3.2輸出變數 44 3.4建立案例資料庫 45 3.4.1案例蒐集 45 3.4.2資料處理 48 3.5建立實獲完工工期推論模式 50 3.5.1案例正規化 50 3.5.2交叉驗證 51 3.5.3 SOS-LSSVM之應用 52 3.5.4誤差衡量指標 55 3.6推論模式結果與比較 58 3.6.1推論模式結果 58 3.6.2模式結果比較 61 第四章 推論模式之應用 70 4.1推論模式應用流程 70 4.2案例資料及輸出結果 72 4.3處置措施 75 第五章 結論與建議 76 5.1結論 76 5.2建議 78 參考文獻 79

[1] M.-Y. Cheng, Doddy Prayogo, Yu-Wei Wu (in preparation). Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model. Construction and Building Materials.
[2] Chan, Wai-ming, 1998, Modelling construction durations for public housing projects in Hong Kong, PHD Thesis, The University of Hong Kong.
[3] Lipke W., 2003, Schedule is different. The Measurable News, 31-34.
[4] Stephan Vandevoorde & Mario Vanhoucke, 2006, A comparison of different project duration forecasting methods using earned value metrics, International Journal of Project Management, 24:289–302
[5] 李宗憲, 2008, 實獲值管理在工程專案管理之應用改進研究, 碩士論文, 國立成功大學高階管理碩士
[6] 林哲宏, 2010, 論製造業運用實獲值管理技術,碩士論文, 國立中正大學高階主管管理研究所
[7] Anbari, F., 2003, Earned value method and extensions, Project Manage Journal, 34(4), 12-23.
[8] Jacob, D., 2003, Forecasting project schedule completion with earned value metrics, The Measurable News, 1(March), 7-9.
[9] Henderson K., 2004, Further developments in earned schedule: The Measurable News, 2004(Spring):15–6. 20–2.
[10] 曾清枝, 2014, 專案管理:以系統手法管理專案, 雙葉書廊
[11] 徐建智, 2002, 專案管理要徑法中逐步遞減與全面遞減在時間/成本抵換之比較, 碩士論文, 國立臺北科技大學商業自動化與管理研究所
[12] 陳瑞君, 2011, 運用營建資源因子建構工程進度預測模式之研究, 碩士論文, 國立臺灣大學土木所
[13] 簡崑棋, 2004, 結合模糊類神經網路與快速混雜基因演算法於專案工期之預測, 碩士論文, 國立成功大學土木所
[14] Ming-Chiao Lin, Hui Ping Tserng, Shih-Ping Ho & Der-Liang Young 2011, DEVELOPING A CONSTRUCTION-DURATION MODEL BASED ON A HISTORICAL DATASET FOR BUILDING PROJECT, Journal of Civil Engineering and Management
[15] Huawang Shi & Wanqing Li, 2009, The Grey Relational Analysis on Building Construction Duration Cases, International Conference on Future BioMedical Information Engineering
[16] PETER F. KAMING, PAUL O. OLOMOLAIYE, GARY D. HOLT and FRANK C. HARRIS, 1997, Construction Management and Economics, 15:83-94
[17] DANIEL W. M. CHAN & MOHAN M. KUMARASWAMY, 1996, An Evaluation of Construction Time Performance in the Building Industry, Building and Environment, Vol. 31, No. 6. pp. 569- 578
[18] Raymond N. Nkado, 1995, Construction time-influencing factors: the contractor's perspective, Construction Management and Economics, 13:1, 81-89
[19] Ko, C. H., 1999, Computer aided decision support system for disaster prevention of hillside residents, MS thesis, National Taiwan University of Science and Technology.
[20] Fukahori, K. and Kubota, Y., 2000, Consistency evaluation of landscape design by a decision support system, Computer-Aided Civil and Infrastructure Engineering, 15(5), 342-354.
[21] Sundin, S and Braban-Ledoux, C., 2001, Artificial intelligence-based decision support technologies in pavement management, Computer-Aided Civil and Infrastructure Engineering, 16(2), 143-157
[22] M.-Y. Cheng, Y.-W. Wu, 2009, Evolutionary support vector machine inference system for construction management, Automation in Construction, 18(5): 597-604.
[23] M.-Y. Cheng, P.M. Firdausi, D. Prayogo, 2014, High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT). Engineering Applications of Artificial Intelligence, 29: 104-113.
[24] M.-Y. Cheng, D. Prayogo, Y.-W. Wu, 2014, Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture. Journal of Computing in Civil Engineering, 28(4): 06014003.
[25] M.-Y. Cheng, D.K. Wibowo, D. Prayogo, A.F.V. Roy, 2015, Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. Journal of Civil Engineering and Management, 21(7): 881-892.
[26] M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu, 2013, Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study. Automation in Construction, 35: 306-313.
[27] M.-Y. Cheng, A.F.V. Roy, 2011, Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines. International Journal of Project Management, 29(1): 56-65.
[28] M.-Y. Cheng, M.-T. Cao, 2014, Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams. Engineering Applications of Artificial Intelligence, 28: 86-96.
[29] D. Prayogo, 2012, A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete, Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology.
[30] D.E. Goldberg, K. Deb, H. Kaegupta, and G. Harik, 1993, Rapid, accurate optimization of difficult problems using fast messy genetic algorithms.
[31] Suykens, J., et al., 2002, Least Square Support Vector Machines. World Scientific Publishing Co. Pte. Ltd.
[32] Min-Yuan Cheng and Nhat-Duc Hoang, 2012, Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report, CIC Lab, National Taiwan Univ. of Sci. and Tech.
[33] M.-Y. Cheng, D. Prayogo, Prayogo D., 2014, Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139: 98-112.
[34] D. Prayogo, An Innovative Parameter-Free Symbiotic Organisms Search (SOS) for Solving Construction-Engineering Problems, PhD thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, 2015.
[35] G.G. Tejani, V.J. Savsani, Patel V. K., 2016, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering.
[36] M.-Y. Cheng, D. Prayogo, D.-H. Tran, 2015, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineering: 04015036.
[37] D.-H. Tran, M.-Y. Cheng, D. Prayogo, 2016, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94: 132-145.
[38] M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, 2014, SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 26(4): 293-308.
[39] S. Duman, 2016, Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Computing and Applications: 1-15.
[40] H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, 2016, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy, 100: 285-297.
[41] E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, 2015, Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 101: 857-861.
[42] A. Panda, S. Pani, 2016, A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46: 344-360
[43] G.V. Kass, An exploratory technique for investigating large quantities of categorical data, 1980, Journal of the Royal Statistical Society, Series C: Applied Statistics, 29 (2) , pp. 119–127
[44] L. Breiman, J. Friedman, R. Olshen, C. Stone, 1984, Classification and Regression Trees, Chapman & Hall/CRC, New York, NY
[45] M.-Y. Cheng, L.-C. Lien, (2012), Hybrid Artificial Intelligence–Based PBA for Benchmark Functions and Facility Layout Design Optimization, Journal of Computing in Civil Engineering 26 (5): 612-624.
[46] M.-Y. Cheng, D. Prayogo, Y.-W. Wu, M.M. Lukito, 2016, A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure, Automation in Construction 69: 21-33.
[47] M.-Y. Cheng, D. Prayogo, 2016, A novel fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving structural optimization problems, Engineering with Computers: 1-15.
[48] Lewis, C. D., 1982, International and Business Forecasting Methods. London: Butterwo

QR CODE