簡易檢索 / 詳目顯示

研究生: 童蔚桓
Wei-Huan Tung
論文名稱: 鐵-20鎳-15錳-3.0鋁-0.6碳合金鋼的相變化研究
The study of phase transformation in an Fe-20 Ni-15 Mn-3.7 Al-0.6 C steel
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chao-Zheng Wang
林熾燦
Chi-Can Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 鎳錳鋁合金鋼相變化M23C6碳化物B2
外文關鍵詞: nickel-manganese-aluminum alloy steel, phase transformation, M23C6 carbide, B2
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本團隊研究輕量化合金錳鋁鋼的相組成與對應的相變化數十載,具有多項發表成果,且本研究團隊嘗試在四元錳鋁鋼的基礎下添加鎳,使其成為五元的鎳錳鋁鋼,探討鎳添加的效應。本論文研究成分為Fe-20 Ni-15 Mn-3.0 Al-0.6 C (wt.%)的五元鎳錳鋁鋼,探討此五元合金鋼經1100℃固溶處理的組成相、經後續低溫恆溫處理的組成相與對應的相變化關係。本合金鋼經固溶處理後為單一沃斯田體相;固溶處理後在600℃至950℃的溫度區間,於沃斯田體基地內生成富鎳鋁的BCC (α)析出物;在600℃至800℃的溫度區間,於晶界處析出M23C6碳化物,並發現在其周圍伴隨著BCC晶粒析出,如此M23C6碳化物與周圍的BCC晶粒形成特殊的層狀組織。在室溫下,此富鎳鋁BCC析出物晶粒是由(BCC + B2)奈米晶粒所組成,其原因為富鎳鋁相析出物於600℃以上高溫時為BCC相,在淬水的急速降溫過程中經由spinodal相分離分解成含富鎳鋁的BCC相奈米晶粒基地與含低鎳鋁的BCC相奈米晶粒,其中含富鎳鋁相奈米晶粒基地於冷卻過程,再經由有序相變化轉變為B2相。於600℃以上高溫時的BCC析出物於冷卻過程的連續反應式如下:α → α' + α'' → α' + B2。


The team has studied the phase composition and corresponding phase changes of lightweight alloyed manganese-aluminum steel for decades and has published many results. The research team also tried to add a nickel to the quaternary manganese-aluminum steel to make it a five-element nickel-Manganese-aluminum steel, to investigate the effect of nickel addition. This paper studies the five-element nickel-manganese-aluminum steel whose composition is Fe-20 Ni-15 Mn-3.0 Al-0.6 C (wt.%), discusses the composition phase of this five-element alloy steel after solution treatment at 1100℃, and the subsequent low-temperature relationship between the composition phase of constant temperature treatment and the corresponding phase change. The alloy steel is a single austenite phase after solution treatment; after solution treatment, BCC (α) precipitates rich in nickel and aluminum are formed in the austenite base at a temperature range of 600 ° C to 950 ° C; In the temperature range of 600°C to 800°C, M23C6 carbide precipitates at the grain boundary, and it is found that BCC grains precipitate around it so that M23C6 carbide and the surrounding BCC grains form a special layered structure. At room temperature, the nickel-rich aluminum BCC precipitate grains are composed of (BCC+B2) nano-size particles, the reason is that the rich-nickel-aluminum phase are BCC phases at high temperatures above 600 ° C during the rapid cooling process, the spinodal decomposes separation in the BCC phase nano-size particles base containing nickel and aluminum and the BCC phase nano-size particles containing low nickel and aluminum, and the nanocrystal grain containing nickel and aluminum phase is based on the cooling process, and then transformed into the B2 phase through an ordering phase change. The continuous reaction formula of BCC precipitates in the cooling process at a high temperature above 600°C is as follows: α → α' + α'' → α' + B2.

摘 要 I ABSTRACT I 目  錄 III 圖 目 錄 IV 表 目 錄 IX 第一章 前  言 1 第二章 文獻回顧 3 2.1 錳鋁合金鋼介紹 3 2.2 鎳元素在錳鋁合金鋼內的作用 4 2.3 合金鋼中的相變化 5 第三章 實驗方法 11 3.1 實驗步驟 11 3.2 合金熔鑄 12 3.3 鑄錠加工 13 3.4 熱處理 14 3.5 實驗分析設備 16 3.6 試片準備流程 20 第四章 結果與討論 27 4.1 合金鋼經固溶處理的組成相 27 4.2 低溫恆溫處理的相組織 29 4.3 高溫BCC相經由spnodal相分離與有序化反應生成(BCC+B2)的組成晶粒 35 第五章 結 論 75 參考文獻 78

[1] W. R. Cline, The economics of global warming. Institute for International Economics, Energy Studies Review, 4 (1992) 399.
[2] M. D. Valérie, Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5, (2018) 43.
[3] A. Richard, When could global warming reach 4° C?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369.1934 (2011) 67.
[4] C. Thomas, Some economics of global warming, The American Economic Review, 82.1 (1992) 1.
[5] N. Lutsey, Review of technical literature and trends related to automobile mass-reduction technology, Institute of Transportation Studies, Research Report–UCD-ITS-RR-10-10, University of California, Davis, USA, (2010).
[6] H. Jürgen. Aluminium in innovative light-weight car design, Materials transactions, 52.5 (2011) 9209
[7] G. Martin, "Super Light Car—lightweight construction thanks to a multi-material design and function integration." European Transport Research Review, 1.1 (2009) 5.
[8] B.R. Miao, Research on multidisciplinary fatigue optimization design method in structural design of high speed train, Procedia Structural Integrity, 22 (2019) 102.
[9] X. J. Liu, Experimental study of the phase equilibria in the Fe-Mn-Al system, Metallurgical and Materials Transactions A, 27 (1996) 2429.
[10] N.S. Stoloff, Emerging applications of intermetallics, Intermetallics, 8 (2000) 1313.
[11] H.K.D.H. Bhadeshia, Computational design of advanced steels, Scr. Mater, 70 (2014) 12.
[12] R. Rana, Evolution of microstructure and mechanical properties during thermomechanical processing of a low-density multiphase steel for automotive application, Acta Mater, 75 (2014) 227.
[13] X.F. Zhang, Tensile deformation behaviour of Fe-Mn-Al-C low density steels, J. Iron Steel Res, 23 (2016) 963.
[14] M.C. Ha, Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature, Mater. Sci. Eng. A, 586 (2013) 276.
[15] O. A. Zambrano, A general perspective of Fe–Mn–Al–C steels, Journal of materials science 53.20 (2018) 14003.
[16] A. Inoue, Microstructure and mechanical properties of ductile Ni3AI-type compound in Fe-(Ni, Mn)-AI-C systems rapidly quenched from melts, Metall. Trans. A, 12A (1981) 1245.
[17] M. Piston, Microstructural influence on mechanical properties of a lightweight ultrahigh strength Fe-18 Mn-10 Al-0.9 C-5Ni (wt%) Steel, Metals, 10.10 (2020) 1305.
[18] G. López, Phase characterization of diffusion soldered Ni/Al/Ni interconnections, Interface Science, 10 (2022) 13.
[19] H. S. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility, Nature 518.7537 (2015) 77.
[20] D. A. Porte, Phase transformations in metals and alloys (revised reprint), CRC press, (2009).
[21] J. H. Hwang, Improvement of strength–ductility balance of B2-strengthened lightweight steel, Acta Materialia, 191 (2020) 1.
[22] C. H. Wang, Research of phase transformation on Fe–8.7 Al–28.3 Mn–1C–5.5 Cr alloy, Journal of alloys and compounds 488.1 (2009) 246.
[23] H. Kim, Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties, Science and technology of advanced materials, 14 (2013) 1.
[24] C. Y. Chao, Effects of Mn contents on the microstructure and mechanical properties of the Fe-10 Al-xMn-1.0 C alloy, Materials Transactions, 43.10 (2002) 2635.
[25] D.W. Suh, Low-density steels. Scripta Materialia, 68 (2013) 337.
[26] Y. Sutou, High strength Fe-20Mn-Al-C-based alloys with low density, ISIJ International, 50 (2010) 893.
[27] G. Frommeyer, Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight triples steels, Steel Research International, 77 (2006) 627.
[28] D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Materialia, 68 (2013) 343.
[29] J.B. Seol, Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography, Scr. Mater, 68 (2013) 348.
[30] G. Frommeyer, Microstructures and mechanical properties of high strength Fe-Mn-Al-C light-weight TRIPLEX steels, Steel Res. Int, 77 (2006) 627.
[31] J.B. Seol, Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels, Acta Mater, 60 (2012) 6183.
[32] M.J. Yao, Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel, Acta Mater, 106 (2016) 229.
[33] R.G. Davies, Influence of martensite composition and content on the properties of dual phase steels, Metallurgical Transactions A, 9 (1978) 671.

無法下載圖示 全文公開日期 2026/02/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2028/02/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE