簡易檢索 / 詳目顯示

研究生: 涂文香
Wen-Hsiang Tu
論文名稱: 二氧化碳雷射退火製備鋯鈦酸鉛鐵電厚膜特性研究
The Effects of CO2 Laser Annealing Parametars on the Ferroelectric Properties of Lead Zirconate Titanate Thick Films
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 周振嘉
Chen-Chia Chou
潘漢昌
Han-Chang Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 105
中文關鍵詞: 鋯鈦酸鉛(PZT)鐵電厚膜二氧化碳雷射退火溶膠-凝膠法鈣鈦礦結構鐵電特性
外文關鍵詞: lead zirconate titanate (PZT) thick films, carbon dioxide laser annealing, Sol-Gel method, perovskite structure, ferroelectric properties
相關次數: 點閱:394下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用改良式溶膠-凝膠法製備鋯鈦酸鉛(PZT)鐵電厚膜,使用二氧化碳雷射退火製程將厚膜非晶相結構轉換成具鐵電特性之鈣鈦礦結構,並與爐管退火作為比較。實驗中利用溶膠-凝膠法製備出500℃ ~ 750℃六種不同成相溫度粉末,粉末顆粒尺寸平均約100 nm ~ 300 nm左右,藉由細緻的粉末製備出較細緻的鐵電厚膜結構層。本文分析厚膜試片使用儀器有X-ray繞射分析儀(XRD)、場發式掃描電子顯微鏡(FESEM)、鐵電特性量測系統、漏電流等量測方法,進行鋯鈦酸鉛鐵電厚膜微觀結構與特性分析。
使用較低退火溫度製備鋯鈦酸鉛粉末具有較小的顆粒尺寸,本實驗中製備三種不同成相溫度粉末之厚膜試片,經雷射退火與爐管退火厚膜試片相互比較特性。實驗結果顯示,550℃粉末具些許焦綠石相,由於爐管退火的溫度與時間不足,無法使550℃厚膜中具有焦綠石相之粉末轉換成鈣鈦礦相,而雷射退火可瞬間產生高能量使焦綠石相粉末轉為鈣鈦礦結構,故經雷射退火之厚膜試片殘留極化值可高達24.29 μC/cm2比爐管退火之殘留極化值2.78 μC/cm2具有更優異的表現。
使用氧化物法製備之鋯鈦酸鉛粉末顆粒尺寸平均約626 nm,與溶膠-凝膠法之細緻鋯鈦酸鉛粉末製備厚膜試片比較,顆粒粗大之厚膜結構會具有較多的表面裂紋與厚膜層孔洞產生,其厚膜具有較多的空洞與較不平整的厚膜表面,會影響厚膜試片之鐵電特性與漏電流值,其氧化物法厚膜試片漏電流變化呈現相當大的變動,氧化物法粉末製備五層厚膜試片經雷射退火功率120 W/cm2持溫5秒之殘留極化值最高只到達4.21 μC/cm2與漏電流密度高達4.89e-10 A/cm2。故粉末顆粒大小將影響厚膜結構緻密度,其鐵電特性與漏電流將有所影響。
雷射退火鋯鈦酸鉛厚膜試片與爐管退火比較具有相當多的優勢,雷射退火影響參數有雷射功率密度大小、退火處理時間控制以及最佳處理厚膜試片厚度,厚膜試片才會有優異的特性呈現,均是實驗中必須考慮的因素。根據前人研究中提到雷射退火厚膜試片最佳穿透深度為鋯鈦酸鉛五層厚膜,厚度約5 μm厚。本研究中將五層厚膜經雷射退火處理過後,接著於處理過後之五層厚膜試片上,再旋鍍上鋯鈦酸鉛五層厚膜層,再經雷射退火處理,依每五層厚膜經雷射功率100 W/cm2退火15秒處理之步驟,當循環四次可成功製備出20 μm具有相當厚度之鋯鈦酸鉛厚膜結構,且厚膜層均經雷射退火處理轉換成鈣鈦礦結構,於鐵電特性量測中,二十層厚膜試片其殘留極化值可高達Pr=27.74 μC/cm2與矯頑電場值Ec=0.71 kV/cm,具有相當優異的鐵電特性。本研究中可利用二氧化碳雷射退火製備出達20 μm厚度之鋯鈦酸鉛厚膜結構,並得到優異的鐵電特性。


In this study, lead zirconate titanate (PZT) ferroelectric thick films are prepared by a modified Sol-Gel method. The microstructure of the thick film is transformed from the amorphous phase to the perovskite structure by carbon dioxide laser annealing. A comparison with furnace annealing is also provided.
Six kinds of powders with an average size among 100 nm ~ 300 nm, temperature ranging from 500℃ ~ 750℃, are prepared by a Sol-Gel method. The nano-powders lead to finer PZT thick films. In this paper, microstructure and properties of PZT thick films are analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ferroelectric propert testing system.
In the experiment, the thick films of three different temperatures are prepared by PZT powders with smaller grain sizes under lower annealing temperature. The products are compared with those of laser annealing and furnace annealing. On the basis of our examination, the transformation of 550℃ thick films with pyrochlore powders to perovskite structure is failed due to insufficient time and temperature in furnace annealing. On the other hand, a sudden increase in laser energy successfully transforms the pyrochlore powders into the perovskite structure. It follows that laser annealing is more powerful than furnace annealing in terms of the remnant polarization (Pr) of the thick films prepared (24.29 μC/cm2 > 2.78 μC/cm2 ).
The average size of lead zirconate titanate powders prepared by oxidization is 626 nm, larger than that by Sol-Gel method. It is also observed that there are more holes and cracks on the surface of the thick films as a result of larger grain sizes. In addition to that, the roughness also results in variability of leakage current density. The remnant polarization (Pr) of 5-layer thick films can only reach 4.21 μC/cm2 , with leakage current density to 4.89e-10 A/cm2, under laser annealing power 120 W/cm2, 5-second constant temperature. The grain sizes have effects on the fineness of thick films, ferroelectric properties, and leakage current density.
In comparison with furnace annealing, laser annealing is superior in a number of ways. There are several variables that should be considered, including laser power density, annealing time control, and best thickness of films, which all contribute to successful thick films. In the previous research, the ultimate penetration depth should be 5 μm, about 5 layers of perovskite lead titanate. In the present study, 5 layers of thick films annealed by laser are spin coated with perovskite lead titanate, followed by another laser annealing. The process is repeated four times under laser power 100 W/cm2 for 15 seconds in each set of five layers, resulting in a 20 μm thick film. In testing the ferroelectric properties, the remnant polarization reaches as high as 27.74 μC/cm2 in the perovskite structure transformed, with the value of coercive electric field Ec=0.71 kV/cm. The properties are quite impressive.
In short, lead zirconate titanate (PZT) thick films, with thickness 20 μm, are prepared by carbon dioxide laser annealing, resulting in great ferroelectric properties.

目 錄 中文摘要------------------------------------------------------Ⅰ 英文摘要------------------------------------------------------Ⅲ 誌謝----------------------------------------------------------Ⅴ 目錄----------------------------------------------------------ⅤⅡ 圖目錄--------------------------------------------------------ⅩⅠ 表目錄--------------------------------------------------------ⅩⅦ 第一章 前言-------------------------------------------------------------------1 第二章 文獻回顧---------------------------------------------------------------4 2.1鐵電材料的定義-----------------------------------------------------------4 2.2鈣鈦礦結構---------------------------------------------------------------6 2.3鈦鋯酸鉛材料結構---------------------------------------------------------8 2.4鐵電薄膜製備方法--------------------------------------------------------10 2.5溶膠-凝膠法-------------------------------------------------------------12 2.5.1溶膠-凝膠法的基本原理-----------------------------------------------14 2.5.2 起始原料與溶劑選擇-------------------------------------------------15 2.5.3 薄膜的鍍製---------------------------------------------------------15 2.5.4 薄膜低溫焦化處理---------------------------------------------------17 2.5.5 改良式溶膠-凝膠法--------------------------------------------------18 2.5.6 鋯鈦酸鉛粉末製備---------------------------------------------------21 2.6 雷射退火的特性---------------------------------------------------------23 2.6.1 雷射基本原理-------------------------------------------------------23 2.6.2 二氧化碳雷射簡介---------------------------------------------------26 2.6.3 雷射能量機制-------------------------------------------------------27 2.6.4 鐵電薄膜雷射退火應用-----------------------------------------------28 第三章 實驗方法與步驟--------------------------------------------------------31 3.1實驗流程----------------------------------------------------------------31 3.2實驗藥品與儀器介紹------------------------------------------------------32 3.2.1 實驗藥品-----------------------------------------------------------32 3.2.2實驗儀器與設備------------------------------------------------------32 3.3 鋯鈦酸鉛前置溶液與粉末製備---------------------------------------------34 3.3.1 鋯鈦酸鉛前置溶液製備-----------------------------------------------34 3.3.2 鋯鈦酸鉛粉末製備---------------------------------------------------35 3.4 鋯鈦酸鉛厚膜試片製備---------------------------------------------------37 3.4.1基板材料選用與清潔--------------------------------------------------37 3.4.2第一層薄膜旋鍍------------------------------------------------------38 3.4.3 厚膜旋鍍製程-------------------------------------------------------39 3.5 二氧化碳雷射退火製程---------------------------------------------------41 3.5.1 雷射最佳參數設定---------------------------------------------------42 3.5.2 添加不同成相溫度之鋯鈦酸鉛粉末雷射退火-----------------------------42 3.6鐵電特性電極製作--------------------------------------------------------43 3.7 鋯鈦酸鉛厚膜試片相關特性分析-------------------------------------------46 第四章 結果與討論------------------------------------------------------------48 4.1 鋯鈦酸鉛不同退火溫度粉末分析-------------------------------------------48 4.1.1 鋯鈦酸鉛不同退火溫度粉末X-ray繞射分析------------------------------48 4.1.2 鋯鈦酸鉛不同退火溫度粉末SEM分析------------------------------------51 4.1.3 鋯鈦酸鉛不同退火溫度粉末粒徑分析-----------------------------------52 4.2 不同退火溫度粉末製備厚膜試片分析---------------------------------------55 4.2.1 不同退火溫度粉末製備厚膜試片之X-ray繞射分析------------------------55 4.2.2不同退火溫度粉末製備厚膜試片之SEM分析-------------------------------57 4.2.3不同退火溫度粉末製備厚膜試片之鐵電特性量測--------------------------60 4.2.4不同退火溫度粉末製備厚膜試片之漏電流量測----------------------------63 4.3 氧化物法之鋯鈦酸鉛粉末製備厚膜試片特性分析-----------------------------65 4.3.1 氧化物法粉末製備方法-----------------------------------------------65 4.3.2 氧化物法粉末X-ray繞射分析------------------------------------------65 4.3.3氧化物法粉末顆粒大小使用SEM與粒徑分析-------------------------------66 4.3.4鋯鈦酸鉛厚膜試片經雷射退火之SEM分析---------------------------------67 4.3.5鋯鈦酸鉛厚膜試片經雷射退火之鐵電特性分析----------------------------68 4.3.6鋯鈦酸鉛厚膜試片經雷射退火之漏電流分析------------------------------71 4.4 雷射退火鋯鈦酸鉛厚膜試片雷射退火散熱特性分析---------------------------74 4.4.1 厚膜試片使用不同散熱金屬墊片之X-ray繞射分析------------------------75 4.4.2 厚膜試片使用不同散熱金屬墊片之鐵電特性分析-------------------------76 4.4.3 厚膜試片使用不同散熱金屬墊片漏電流特性分析-------------------------78 4.4.4 厚膜試片有無散熱機制之X-ray繞射分析--------------------------------79 4.4.5 厚膜試片有無散熱機制之鐵電特性分析---------------------------------81 4.4.6 厚膜試片有無散熱機制之漏電流分析-----------------------------------83 4.5 雷射退火鋯鈦酸鉛厚膜試片分析-------------------------------------------85 4.5.1 雷射退火厚膜試片穿透深度分析---------------------------------------85 4.5.2 雷射退火厚膜試片熔融表面分析---------------------------------------87 4.5.3 厚膜試片使用不同雷射功率與退火時間特性分析-------------------------90 4.5.4 厚膜試片分層雷射退火特性分析---------------------------------------93 第五章 結論------------------------------------------------------------------97 第六章 未來研究方向----------------------------------------------------------99 參考文獻--------------------------------------------------------------------100 圖 目 錄 圖2-1 P-E極化-電場曲線圖[14]--------------------------------------------------6 圖2-2 (a)在居禮溫度(Tc)以上,離子位置呈現出理想的立方晶格結構;(b)在居禮溫度 (Tc)以下,晶格改變為正方晶格結構[7]------------------------------------7 圖2-3 鈦鋯酸鉛PZT相圖[24]-----------------------------------------------------9 圖2-4 溶膠-凝膠法製備薄膜[32]------------------------------------------------13 圖2-5 旋鍍法製程[33]---------------------------------------------------------16 圖2-6 薄膜旋鍍示意圖[36]-----------------------------------------------------17 圖2-7 添加微粉末之改良式溶膠-凝膠製備鋯鈦酸鉛厚膜流程圖[9] ------------------20 圖2-8 粉末與溶液混合泥漿製備鋯鈦酸鉛厚膜流程圖[4]----------------------------20 圖2-9 文獻中PZT粉末於300、400、500、550、600、650、700、750及800℃不同燒結溫度 的XRD繞射圖[44]--------------------------------------------------------22 圖2-10 文獻中PZT粉末燒結溫度(A)600℃(B)700℃(C)800℃之SEM與平均粒徑尺寸圖形 [44]------------------------------------------------------------------22 圖2-11 氣體雷射基本構造[49]--------------------------------------------------23 圖2-12 雷射產生過程:(a)雷射處於基態 (b)及(c)初期雜亂狀態 (d)初期激發狀態 (e) 同調單頻光波 (f)雷射光束輸出[49]----------------------------------25 圖2-13 二氧化碳能量轉移圖[49]------------------------------------------------27 圖3-1 實驗流程圖-------------------------------------------------------------31 圖3-2 鋯鈦酸鉛前置溶液製備流程圖---------------------------------------------35 圖3-3 鋯鈦酸鉛粉末製作流程圖-------------------------------------------------36 圖3-4 鋯鈦酸鉛試片設計圖-----------------------------------------------------38 圖3-5 鋯鈦酸鉛厚膜鍍膜步驟流程圖---------------------------------------------40 圖3-6 二氧化碳雷射退火鋯鈦酸鉛厚膜試片示意圖---------------------------------41 圖3-7 電極製作剝離法(lift off)製作流程圖-------------------------------------45 圖3-8 鋯鈦酸鉛厚膜相關特性分析流程圖-----------------------------------------47 圖4-1 PZT粉末於不同退火溫度下(a)500℃(b)550℃(c)600℃(d) 650℃(e) 700℃(f)750℃ 分別持溫1小時的X-ray繞射圖形-------------------------------------------50 圖4-2 PZT粉末於550℃成相退火(a)經退火溫度550℃持溫1小時後粉末X-ray繞射圖,粉末 呈現未完全成相;(b)為該粉末再經550℃持溫30分鐘退火後之粉末X-ray繞射圖,粉 末具鈣鈦礦結構---------------------------------------------------------50 圖4-3 不同退火溫度經球磨過後PZT成相微粉末(a)500℃(b)550℃ (c)600℃(d) 650℃ (e)700℃(f)750℃之SEM表面型態圖----------------------------------------51 圖4-4 不同退火溫度經球磨過後PZT成相微粉末(a)500℃(b)550℃ (c)600℃(d) 650℃ (e) 700℃(f)750℃之粉粒徑分析圖形--------------------------------------53 圖4-5 使用500℃~750℃退火溫度經球磨過後PZT成相微粉末之粉末平均粒徑尺寸關係曲線 圖---------------------------------------------------------------------54 圖4-6 分別使用(a)550℃、(b)650℃、(c)750℃不同退火溫度粉末製備之五層厚膜試片經 雷射功率100W/cm2退火15秒之X-ray繞射圖----------------------------------56 圖4-7 分別使用(a)550℃、(b)650℃、(c)750℃不同退火溫度粉末製備之五層厚膜試片經 爐管退火650℃持溫30分鐘之X-ray繞射圖-----------------------------------56 圖4-8 使用(a)550℃(b)650℃(c)750℃粉末製備五層厚膜結構利用雷射功率100 W/cm2退火 15秒之SEM表面與橫斷面影像圖--------------------------------------------58 圖4-9 使用(a)550℃(b)650℃(c)750℃粉末製備五層厚膜結構利用爐管退火650℃持溫30分 鐘之SEM表面與橫斷面影像圖----------------------------------------------59 圖4-10 使用(a)550℃、(b)650℃、(c)750℃不同退火溫度粉末之五層厚膜試片經雷射功率 100W/cm2退火15秒之P-E曲線圖-------------------------------------------61 圖4-11 使用(a)550℃、(b)650℃、(c)750℃不同退火溫度粉末之五層厚膜試片經爐管退火 650℃持溫30分鐘之P-E曲線圖--------------------------------------------62 圖4-12 分別使用(a)550℃、(b)650℃、(c)750℃不同退火溫度粉末之五層厚膜試片經雷射 功率100 W/cm2退火15秒之漏電流曲線圖-----------------------------------64 圖4-13 分別使用(a)550℃、(b)650℃、(c)750℃不同退火溫度粉末之五層厚膜試片經爐管 退火650℃持溫30分鐘之漏電流曲線圖-------------------------------------64 圖4-14 氧化物法製備鋯鈦酸鉛粉末之X-ray繞射圖---------------------------------66 圖4-15 氧化物法製備PZT粉末(a)SEM表面型態 (b)粉粒徑分析圖形------------------67 圖4-16 五層PZT厚膜經120 W/ cm 2雷射退火處理5秒之SEM表面與橫斷面影像圖--------67 圖4-17 八層PZT厚膜經120 W/cm 2雷射退火處理3秒之SEM表面與橫斷面影像圖---------68 圖4-18 經雷射功率100 W/cm 2退火PZT厚膜單層(25秒)、五層(15秒)、十層(5秒)之表面粗 糙度值分佈曲線圖 [11] ------------------------------------------------68 圖4-19 五層PZT厚膜經120 W/cm 2雷射退火處理5秒之P-E曲線圖---------------------70 圖4-20 八層PZT厚膜經120 W/cm 2雷射退火處理3秒之P-E曲線圖---------------------70 圖4-21 氧化物法製備PZT厚膜試片經雷射功率120 W/cm2 (a)五層厚膜退火5 秒(b)八層厚 膜退火3秒之漏電流曲線圖-----------------------------------------------73 圖4-22 不同PZT粉末製備五層厚膜經雷射功率100 W/cm2 (a)500℃粉末-退火15秒; (b)500℃粉末-退火30秒;(c)500℃粉末-退火60秒;(d)氧化物法粉末-退火15秒; 分別使用不同退火處理之漏電流曲線圖-----------------------------------73 圖4-23 厚膜試片進行雷射退火有無散熱機制示意圖--------------------------------74 圖4-24 PZT五層厚膜試片經雷射功率100 W/cm2退火10秒使用(a)銅片(b)鋁片(c)不銹鋼墊 片,不同散熱墊片之X-ray繞射圖-----------------------------------------76 圖4-25 PZT五層厚膜試片使用不銹鋼墊片經雷射功率100 W/cm2退火10秒,厚膜試片表面熔 融之SEM表面與橫斷面影像圖---------------------------------------------77 圖4-26 PZT五層厚膜試片經雷射功率100 W/cm2退火10秒使用(a)銅片(b)鋁片(c)不銹鋼墊 片(退火4秒),不同散熱墊片之P-E曲線圖----------------------------------78 圖4-27 PZT五層厚膜試片經雷射功率100 W/cm2退火10秒使用(a)銅片(b)鋁片(c)不銹鋼墊 片(退火4秒),不同散熱墊片之漏電流曲線圖-------------------------------79 圖4-28 PZT厚膜五層試片經雷射功率100 W/cm2退火時間5秒(a)有散熱機制(b)無散熱機制 之X-ray繞射圖---------------------------------------------------------80 圖4-29 PZT五層厚膜經100 W/㎝2雷射退火處理5秒(a)有散熱機制(b)無散熱機制之P-E曲線 圖--------------------------------------------------------------------82 圖4-30 PZT八層厚膜經100 W/㎝2雷射退火處理5秒(a)有散熱機制(b)無散熱機制之P-E曲線 圖--------------------------------------------------------------------83 圖4-31 PZT五層厚膜經100 W/㎝2雷射退火處理5秒(a)有散熱機制(b)無散熱機制之漏電流 曲線圖----------------------------------------------------------------84 圖4-32 PZT八層厚膜經100 W/㎝2雷射退火處理5秒(a)有散熱機制(b)無散熱機制之漏電流 曲線圖----------------------------------------------------------------84 圖4-33 十層厚膜經雷射功率140 W/cm2退火4秒,觀察厚膜試片穿透深度之SEM表面型態圖 與橫斷面--------------------------------------------------------------86 圖4-34 十層厚膜經雷射功率140 W/cm2退火4秒,(a)PZT厚膜經雷射處理熔融區域(b)PZT厚 膜未經雷射處理區域(c)Si基板材料,利用EDS分析PZT厚膜試片橫斷面相關元素成 分圖形---------------------------------------------------------------87 圖4-35 PZT五層厚膜試片經雷射退火,厚膜試片表面呈現黑色完全熔融之X-ray繞射圖--89 圖4-36 PZT五層厚膜試片經雷射退火,厚膜試片表面呈現黑色部分熔融之X-ray繞射圖--89 圖4-37 厚膜試片經雷射退火厚膜試片(a)黑色完全熔融(b)部分熔融表面之SEM表面型態圖- ----------------------------------------------------------------------90 圖4-38 使用500℃粉末製備五層厚膜經雷射功率125 W/cm2不同退火時間(a)5、(b)7、 (c)10、(d)15秒之SEM橫斷面---------------------------------------------92 圖4-39 使用500℃粉末製備五層厚膜分別使用不同雷射功率(a)88、(b)100、(c)125、 (d)140 W/cm2退火5秒之SEM橫斷面----------------------------------------92 圖4-40 旋鍍五層PZT厚膜利用雷射功率100 W/cm2退火15秒處理,循環四次實驗步驟得二十 層厚膜試片之SEM表面型態圖與橫斷面-------------------------------------95 圖4-41 旋鍍五層PZT厚膜利用雷射功率100 W/cm2退火15秒處理,循環四次實驗步驟得二十 層厚膜試片之X-ray繞射分析圖形-----------------------------------------95 圖4-42 不同鋯鈦酸鉛厚膜層數試片,以雷射功率100 W/cm2退火25、15、5秒處理1、5、10 層[11]與本研究以雷射功率100 W/cm2退火15秒分層雷射製備二十層厚膜層,不同 厚膜層數與強度關係圖--------------------------------------------------96 圖4-43 經旋鍍五層PZT厚膜利用雷射功率100 W/cm2退火15秒處理,循環四次實驗步驟得二 十層厚膜試片之P-E曲線圖----------------------------------------------96 表 目 錄 表2-1 氣相與液相鍍膜法於各式製程參數的差異-----------------------------------11 表3-1 實驗藥品相關表格-------------------------------------------------------32 表3-2 實驗使用儀器規格-------------------------------------------------------33 表4-1 鋯鈦酸鉛不同退火溫度粉末製備五層厚膜鐵電特性量測紀錄表格---------------62

1.Q. F. Zhou, H. L. W. Chan and C. L. Choy, “Nanocrystalline powder and
fibres of lead zirconate titanate prepared by the sol-gel process, ”
Journal of Materials Processing Technology, Vol. 63, pp. 281-285 (1997).
2.D. L. Polla, and L. F. Francis, “Ferroelectric Thin Films in Micro-
electromechanical Systems Applications, ” MRS Bulletin, July, pp. 59-65
(1996).
3.J. H. Ma, X. J. Meng, J. L. Sun, T. Lin, F. W. Shi, and J. H. Chu, “Effect
of annealing ambient on structure and ferroelectric properties of Pb
(Zr0.4Ti0.6)O3 thin films on LaNiO3 coated Si substrates, ” Materials
Research Bulletin, Vol. 40, pp. 221-228 (2005).
4.O. Huang, A. Bandyopadhyay, and S. Bose, “Influence of processing
parameters on PZT thick films, ” Materials Science and Engineering B, Vol.
116, pp. 19-24 (2005).
5.潘漢昌,「鐵電薄膜雷射低溫製程與電性提升研究」,博士論文,國立台灣科技大學,
台北(2003)。
6.魏崇傑,「以有機金屬先驅物化學氣相沉積法合成鋯鈦酸鉛薄膜成長機構之研究」,碩
士論文,國立台灣科技大學,台北(1999)。
7.周嘉峰,「雷射退火低溫製備鈦鋯酸鉛薄膜之研究」,碩士論文,國立台灣科技大學,
台北(2001)。
8.D. Xia, M. Liu, Y. Zeng, and C. Li, “Fabrication and electrical properties
of lead zirconate titanate thick films by the new sol-gel method, ”
Materials Science and Engineering B, Vol. 87, pp.160-163 (2001).
9.Z. Wang, W. Zhu, C. Zhao, and O. K. Tan, “Dense PZT thick films derived
from sol-gel based nanocomposite process,” Materials Science and
Engineering B, Vol. 99, pp. 56-62 (2003).
10.S. Le Dren, L. Simon, P. Gonnard, M. Troccaz, and A. Nicolas,
“Investigation of factors affecting the preparation of PZT thick films,”
Materials Research Bulletin , Vol. 35, pp. 2037-2045 (2000).
11.葉劉育恩,「鈦鋯酸鉛厚膜應用二氧化碳雷射退火製程之研究」,碩士論文,國立台灣
科技大學,台北(2004)。
12.陳銀郎,「鋯鈦酸鉛鐵電薄膜之有機金屬化學氣相沉積合成」,碩士論文,國立台灣科
技大學,台北(2000)。
13.F. Jona, and G. Shirane, “Ferroelectric Crystals”, Dover Publications,
Inc., pp.11-14 (1993).
14.Yuhuan Xu, “Ferroelectric Materials and Their Applications,” North-
Holland, New York, p.10 (1991).
15.A. L. Moulson, and I. M. Herbert, “Electroceramics”, Chapman and Hall,
New York U.S.A. (1990).
16.J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, and S. B.
Warner, “The science and design of engineering materials”, Richard D.
Irwin. Inc., Chicago U.S.A., pp497-503 (1995).
17.A. Wu, P. M. Vilarinho, I. M. Miranda Salvado and J. L. Baptista, “Seeding
Studies in PZT Thin Films,” Materials Research Bulletin, Vol. 33, No. 1,
pp. 59-68 (1998).
18.R. E. Jones, and S. B. Desu, “Process Integration for Nonvolatile
Ferroelectric Memory Fabrication, ” MRS Bulletin, June, pp. 55-58 (1996).
19.J. Carrano, C. Sudhama, V. Chikarmane, J. Lee, and W. Shepherd,
“Electrical and Reliability Properties of PZT Thin Films for ULSI DRAM
Applications,” IEEE transactions on ultrasonics, ferroelectrics, and
frequency control, Vol. 38, No.6, pp. 690-702 (1991).
20.M. J. Hoffmann, M. Hammer, A. Endriss and D. C. Lupascu, “Correlation
Between Microstructue, Strain Behavior, and Acoustic Emission of Soft PZT
Ceramics,” Acta mater, Vol. 49, pp. 1301-1310 (2001).
21.N. S. Gajbhiye, and P. S. Venkataramani, “Fabrication of PZT Materials
from Nanostructured Powders, ” Progress in Crystal Growth and
Characterization of Materials, pp. 127-131 (2002).
22.Y. Z. Chen, J. Ma, L. B. Kong, and R. F. Zhang, “Seeding in sol-gel
process for Pb(Zr0.52Ti0.48)O3 powder fabrication, ” Materials Chemistry
and Physics Vol. 75, pp. 225-228 (2002).
23.J. C. Fernandes, D. A. Hall, M. R. Cockburn, and G. N. Greaves, “Phase
coexistence in PZT ceramic powders, ” Nuclear Instruments and Methods in
Physics Research B, Vol.97, pp. 137-141 (1995).
24.T. Mitsw, and S. Nomura, “Ferroelectrics and related substances,”
Springer-Verlag, New York, p.426 (1981).
25.R. W. Vest, “Metallo-Organic Decomposition (MOD) Processing of
Ferroelectric and Electro-Optic Films: A review,” Ferroelectric, Vol. 102,
pp.53-68 (1990).
26.吳泰伯,「強介電薄膜之物理氣相鍍膜技術」,工業材料,第109期,第135-141頁
(1996)。
27.陳三元,「強介電薄膜之液相法製作」,工業材料,第108期,第100-111頁(1995)。
28.江進富,「溶膠凝膠法製備鈦鋯酸鉛鐵電薄膜與錳酸鍶鑭氧化物電極薄膜及應用元件製
程規劃」,碩士論文,國立台灣科技大學,台北(2001)。
29.A. Wu, L. Yang, P. M. Vilarinho, I. M. Miranda Salvado, and J. L. Baptista,
“Structural and Electrical Properties of Seeded Lead Zirconate Titanate
Thin Films, ” Thin Soild Films, Vol. 365, pp.24-28 (2000).
30.H. R. Zeng, G. R. Li, Q. R. Yin, and Z. K. Xu, “Local characterization of
compositionally graded Pb(Zr,Ti)O3 thin films by scanning force
microscope, ” Materials Science and Engineering B, Vol. 99, pp. 234-237
(2003).
31.高堅志,實用雷射技術,文笙書局,台北,(1992)。
32.陳慧英、黃定加、朱秦億,「溶膠凝膠法在薄膜製備上之應用」,化工技術,第七卷,
第十一期,第152-166頁,1999。
33.黃雅儀,「添加微粉於有機金屬鹽溶液中製備PZT鐵電厚膜之研究」,碩士論文,國立
清華大學,新竹(1999)。
34.J. Y. Jung, W. S. Kim, and H. H. Park, “The effects of solvent on the
properties of sol-gel derived PZT thin film,” Microprocesses and
Nanotechnology Conference, July, pp. 222-223 (2000).
35.D. P. BirnieⅢ, “Combined flow and evaporation during spin coating of
complex solutions,” Journal of Non-Crystalline Solids, Vol. 218, pp. 174-
178 (1997).
36.C. T. Wang, and S. C. Yen, “Theoretical Analysis of Film Uniformity in
Spining Process,” Chemical Engineering Science, Vol. 50, pp. 989-999
(1994).
37.D. P. Birnie, R. N. Vogt, M. N. Orr, and J. R. Schifko, “Coating
uniformity and device applicability of spin coated sol-gel PZT films,”
Microelectronic Engineering, Vol. 29, pp. 189-192 (1995).
38.J. S. Hwang, S. K. Woo, H. H. Park, and T. S. Kim, “The effect of
intermediate anneal on the ferroelectric properties of direct-patternable
PZT films, ” Sensors and Actuators A, Vol. 117, pp. 137-142 (2005).
39.M. Zhang, X. D. Wang, F. M. Wang, I. M. Miranda Salvado, P.M. Vilarinho,
and W.C. Li, “Preparation and ferroelectric properties of PZT fibers, ”
Ceramics International, Vol. 31, pp. 281-286 (2005).
40.H. Zhu, J. Miao, Z. Wang, C. Zhao, and W. Zhu, “Fabrication of ultrasonic
arrays with 7μm PZT thick films as ultrasonic emitter for object detection
in air, ” Sensors and Actuators A ,123-124, pp. 614-619 (2005).
41.X. Pu, W. Luo, A. Ding, H. Tian, and P. Qiu, “Preparation of PZT thick
films by one-step firing sol-gel process, ” Materials Research Bulletin,
Vol. 36, pp. 1471-1478 (2001).
42.X. Pu, W. Luo, A. Ding, H. Tian, and P. Qiu, “One-Step Firing Process in
Synthesis of Sol–Gel Derived PZT Thick Films, ” Phys. Stat. Sol. (a) ,
Vol. 182, R10 (2000).
43.D. L. Corker, Q. Zhang, R. W. Whatmore, and C. Perrin, “PZT ‘composite’
ferroelectric thick films, ” Journal of the European Ceramic Society, Vol.
22, pp. 383-390 (2002).
44.Z. J. Xu, R. Q. Chu, G. R. Li, X. Shao, and Q. R. Yin, “Preparation of PZT
powders and ceramics via a hybrid method of sol–gel and ultrasonic
atomization, ” Materials Science and Engineering B, Vol. 117, pp. 113-118,
(2005).
45.B. Matthes, G. Tomandl, and G. Werner, “Characterization of PZT Thin Film
Prepared by a Modified Sol-Gel Method, ” Journal of the European Ceramic
Society, Vol. 19, pp. 1387-1389 (1999).
46.S. K. Pandey, A. R. James, C. Prakash, T. C. Goel, and K. Zimik,
“Electrical properties of PZT thin films grown by sol–gel and PLD using a
seed layer, ” Materials Science & Engineering B, Vol. 112, pp. 96-100
(2004).
47.S. Lugomer, Laser Technology, Prentice Hall, (1990).
48.S. S. Charschan, Lasers in Industry, New York, p. 46 (1972).
49.G. Chryssolouris, Laser Machining:Theory and Practice, New York, pp. 20-31
(1991).
50.馬英俊,雷射基本原理及應用,徐氏基金會,台北,(1991)。
51.丁勝懋,雷射工程導論,中央圖書出版社,台北,(1993)。
52.W. J. Witteman, The CO2 Laser, New York, Springer-Verlag, (1987).
53.林三寶,「雷射原理與應用」,全華科技圖書,台北,第103-106頁(1991)。
54.彭文輝,「雷射被覆鎳鋁-鉬介金屬合金機械性質之研究」,碩士論文,國立台灣科技
大學,台北(2001)。
55.P. Baeri, and E. Rimini, “Laser Annealing of Silicon,” Materials
Chemistry and Physics, Vol. 46, pp. 169-177 (1996).
56.C. C. Chang, and P. C. Lu, “The effect of annealing on improving the
quality of lead zirconate titanate thin films on Pt/SiO2/Si substrates, ”
Journal of Materials Processing Technology, Vol. 95, pp. 128-132 (1999).
57.C. K. Kwok, and S. B. Desu, “Pyrochlore to perovskite phase transformation
in sol-gel derived lead-zirconate-titanate thin films,” Applied Physics
Letters, Vol. 60, No. 23, pp. 1430-1432 (1992).
58.R. T. Young, C. W. White, G. J. Clark, J. Narayan, W. H. Christie, M.
Murakami, P. W. King, and S. D. Kramer, “Laser annealing of boron-
implanted silicon”, Appl. Phys. Lett., Vol. 32, No. 3, pp.139-141 (1978).
59.H. Watanabe, H. Miki, S. Suqai, K. Kawasaki, and T. Kioka,
“Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser
Annealing”, Jpn. J. Appl. Phys., Vol. 33, No. 8, pp. 4491-4498 (1994).
60.A. Gat, J. F. Gibbons, T. J. Magee, J. Peng, V. R. Deline and P. Williams,
“Physical and electrical properties of laser-annealed ion-implanted
silicon”, Appl. Phys. Lett., Vol. 32, No. 5, pp.276-278 (1978).
61.E. A. Kneer, and D. P. BirnieⅢ “Effects of Sol-Gel PZT Film Thickness and
Electrode Structure on the Electrical Behavior of Pt/PZT/Pt Capacitors, ”
IEEE International Symposium on Applications of Ferroelectrics, pp. 446-449
(1994).
62.D. Van Genechten, G. Vanhoyland, J. D’Haen, J. Johnson, D. J. Wouters, M.
K. Van Bael, H. Van den Rul, J. Mullens, and L. C. Van Poucke, “Phase
evolution of sol–gel prepared Pb(Zr0.3Ti0.7)O3 thin films deposited on
IrO2/TiO2/SiO2/Si electrodes, ” Thin Solid Films Vol. 467, pp. 104-111
(2004).
63.K. Maki, N. Soyama, S. Mori, and K. Ogi, “Evaluation of CSD-PZT Thick
Films with Different Film Density, ” IEEE, pp.957-960 (2001).

無法下載圖示 全文公開日期 2011/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE