簡易檢索 / 詳目顯示

研究生: 武垂天銀
VO THUY THIEN NGAN
論文名稱: 氣體響應性分子藥物應用於癌症化學治療
GAS-RESPONSIVE MOLECULAR DRUG FOR CANCER CHEMOTHERAPY
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 謝永堂
Yeong-Tarng Shieh
楊長謀
Chang-Mou Yang
戴子安
Chi-An Dai
陳建光
Jem-Kun Chen
莊偉綜
Wei-Tsung Chuang
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 118
中文關鍵詞: 氣體響應性分子癌症
外文關鍵詞: gas-responsive, hypercapnia
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

最常見的癌症治療方法是化學療法,儘管它仍然存在一些非特異性的缺點。在本論文中,我們成功地從有機染料羅丹明 6G 和含胺部分 (RI) 中開發出一種新型分子藥物,該藥物極有可能用作靶向癌症治療的化學劑。該衍生物具有CO2反應能力,可改變溶解度等物理特性,並包裹在載體中進行靶向治療。我們通過單晶 X 射線衍射、核磁共振光譜、質譜和元素分析來定義成功的合成。之後,仔細分析了 CO2 響應特性,以明確溶解度轉換以及質子化引起的其他物理特性轉換。為了應用於化療,RI 被一種含氫鍵的載體 (UrCyPEG) 封裝,該載體對低 pH 值的腫瘤內環境作出反應以釋放藥物。所獲得的負載 RI 的納米顆粒在血清中表現出長期的結構穩定性,並通過共同觸發 pH/CO2 顯著增加藥物釋放。更值得注意的是,一系列體外生物測試表明負載 RI 的納米顆粒對癌細胞具有高選擇性細胞毒性,而對正常細胞無害,這意味著 CO2 響應特性和氫鍵在增強誘導細胞凋亡和選擇性細胞毒性方面的重要作用由於共同作用的 pH/CO2 腫瘤內環境。


The most common approach for cancer treatment is chemotherapy, although it remains several shortcomings as non-specific. In this thesis, we successful developed a novel molecular drug from an organic dye Rhodamine 6G and amine-containing moiety (RI) that is highly possible to utilize as a chemo-agent for targeted cancer treatment. This derivative possesses ability of CO2-response to switch physical characteristic such as solubility and wrapped in a carrier for targeted treatment. We define the successful synthesis by Single-crystal X-ray Diffraction, Nuclear Magnetic Resonance Spectroscopy, Mass spectra and Elemental analysis. Afterward, the CO2-responsive properties were careful analysed to make clear of the solubility switching as well as the other physical characteristic transformation by protonation. To be applied in chemotherapy, RI was encapsulated by a hydrogen-bonding containing carrier (UrCyPEG) that responses to low pH intratumor environment for drug release. The achieved RI-loaded nanoparticles exhibit a long-term structural stability in serum and significant increase in drug release by co-trigger pH/CO2. More attentionally, a sequence of in vitro biological tests illustrates the high selective cytotoxicity of RI-loaded nanoparticles towards cancer cells whereas remains unharmful in normal cells, implying the vital role of CO2-responsive properties and hydrogen bonding in enhance of inducing apoptosis and selective cytotoxicity due to co-effect pH/ CO2 intratumor environment.

ABSTRACT II ACKNOWLEADGEMENT IV I.INTRODUCTION 1 I.1. Background of study 1 I.2. Objective of the thesis 4 II. LITURATURE REVIEW 5 II.1. Overview of Cancer 5 II.2. Therapeutic of Cancer Modalities 12 II.2.1 Surgery 12 II.2.2. Radiation Therapy 13 II.2.4. Hyperthermia Therapy 16 II.2.5. Gene therapy 17 II.2.5.1. Immunotherapy 17 II.2.5.2. Oncolytic viro remedy 20 II.2.5.3. Gene transfer 20 II.2.6. Stem Cells in Cancer Treatment 21 II.3. Nanomedicine in Cancer Therapy 24 II.3.1. Principle of Nanomedicine 24 II.3.2. Advanced Functionalities Nanomedicine in Cancer Therapy 26 II.4. Nanocarrier for Cancer Therapy 31 II.4.1. Linear polymers 31 II.4.2. Dendrimer, the multivalent polymeric systems 32 II.4.3. Liposomes and micelles 32 II.4.4. Non-polymeric nanoparticles 33 II.4.5. Niosomes 34 II.4.6. Solid lipid nanoparticles (SLNs) 35 II.4.7. Nanobubles 35 II.5. CO2-reponsive material 36 II.6. Rhodamine 6G 37 II.7. Imidazole-containing molecules 38 II.8. Ureido Cytosine PEG 39 III. EXPERIMENTAL DESIGN 40 3.1. Materials 40 3.2 Cell experiment materials 41 3.3 Experimental equipment and parameters 43 3.3.1 (Rotary Evaporator) 43 3.3.2 Fourier transform infrared spectroscopy 43 3.3.3 UV/Vis Spectrophotometer 44 3.3.4 Photoluminescence Spectroscopy 44 3.3.5. CO2 incubator 44 3.3.6. Centrifuge 45 3.3.7. Vortex Mixer 45 3.3.8. ELISA Reader 45 3.3.9. Fluorescence Microscope 45 3.3.10. Flow Cytometry 46 3.3.11. Nuclear Magnetic Resonance spectroscopy 46 3.3.12. Dynamic Light Scattering 47 3.3.13. Atomic force microscope 47 3.3.14. Spin Coater 48 3.3.15. Scanning Electron Microscope 48 3.3.16. Elemental Analyzer 49 3.3.17. Mass Spectrometry 49 3.3.18. pH meter 49 3.4. Synthesis RI and UrCyPEG 50 3.5 Sample preparation 51 3.5.1 Polymer preparation 51 3.5.2. Preparation of drug micelles 51 3.5.3. Drug Concentration Calibration Line 52 3.5.4 Drug loading capacity 52 3.5.5. In vitro drug release simulation 52 3.5.6 Nanoparticle stability test 53 3.5.7 Nanoparticle stimulation response test 53 3.5.8. Gas responsive test 53 3.5.6. Hemolysis assay 54 3.6 Cell biological preparation 55 3.6.1 Hela cell culture medium 55 3.6.2 3T3 cell culture medium 55 3.6.3 Cell thawing culture 55 3.6.4 Cell Subculture 55 3.6.6 Cell Biological Toxicity Test 56 3.6.7 Preparation of Fluorescence Microscope 56 3.6.8 Preparation of Annexin-binding buffer 57 IV. RESULTS AND DISCUSSION 58 4.1. Synthesis RI 58 REFERENCES 99

1. Piasentin N, Milotti E, Chignola R. The control of acidity in tumor cells: a biophysical model. Sci Rep. 2020 Aug 12;10(1):13613
2. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465
3. Gatenby, R. A., and Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899.
4. Selfridge AC, Cavadas MA, Scholz CC, Campbell EL, Welch LC, Lecuona E, Colgan SP, Barrett KE, Sporn PH, Sznajder JI, Cummins EP, Taylor CT. Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia. J Biol Chem. 2016 May 27;291(22):11800-8.
5. Yingshuai Wang, Tian Yang, Qianjun He, Strategies for engineering advanced nanomedicines for gas therapy of cancer, National Science Review, Volume 7, Issue 9, September 2020, Pages 1485–1512.
6. Chen, Y., Gao, D. Y., and Huang, L. (2015). In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141.
7. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014 Feb; 66():2-25.
8. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK, Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer, Mater Sci Eng C Mater Biol Appl. 2019 May; 98():1252-1276.
9. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F, Nanoparticles and targeted drug delivery in cancer therapy, Immunol Lett. 2017 Oct; 190():64-83.
10. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability, Venturoli D, Rippe B, Am J Physiol Renal Physiol. 2005 Apr; 288(4):F605-13.
11. Perrault, S. D., Walkey, C., Jennings, T., Fischer, H. C., and Chan, W. C. (2009). Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9, 1909–1915. doi: 10.1021/nl900031y.
12. Wong, C., Stylianopoulos, T., Cui, J., Martin, J., Chauhan, V. P., Jiang, W., et al. (2011). Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U.S.A. 108, 2426–2431.
13. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020 Aug 20;7:193.
14. Darabi, Ali & Jessop, Philip & Cunningham, Michael. (2016). CO2-responsive polymeric materials: Synthesis, self-assembly, and functional applications. Chem. Soc. Rev. 45. 10.1039/C5CS00873E.
15. Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Biostem cellsience Database [Internet]. Austin (TX): Landes Biostem cellsience; 2000-2013.
16. Boedtkjer E, Pedersen SF. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu Rev Physiol. 2020 Feb 10;82:103-126.
17. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. The Development and Causes of Cancer.
18. American cancer society, The Science Behind Radiation Therapy, 2014
19. Sgouros, G., Bodei, L., McDevitt, M.R. et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 19, 589–608 (2020).
20. Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy. [Updated 2021 Sep 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-.
21. The ASCSO Post. Using hyperthermia for cancer treatment: Proofs, promises, and uncertainties. Bath, Charlotte. January 15, 2014.
22. P. Wust, B. Hildebrandt, G. Sreenivasa, Hyperthermia in combined treatment of cancer, Lancet Oncol., 3 (8) (2002), pp. 487-497.
23. W. Tilly, P. Wust, C. Harder, Temperature data and specific absorption rates in pelvic tumors: predictive factors and correlations, Int. J. Hyperth., 17 (2001), pp. 172-
24. Husain, S., Han, J., Au, P. et al. Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther 22, 554–563 (2015).
25. Manpreet Sambi, Leila Bagheri, Myron R. Szewczuk, "Current Challenges in Cancer Immunotherapy: Multimodal Approaches to Improve Efficacy and Patient Response Rates", Journal of Oncology, vol. 2019, Article ID 4508794, 12 pages, 2019.
26. Belete TM. The Current Status of Gene Therapy for the Treatment of Cancer. Biologics. 2021;15:67-77.
27. Iwasaki H. [Leukemia stem cell]. Gan To Kagaku Ryoho. 2014 Mar;41(3):280-4. Japanese.
28. Hawsawi, Y. M., Al-Zahrani, F., Mavromatis, C. H., Baghdadi, M. A., Saggu, S., & Oyouni, A. (2018). Stem Cell Applications for Treatment of Cancer and Autoimmune Diseases: Its Promises, Obstacles, and Future Perspectives. Technology in cancer research & treatment, 17, 1533033818806910.
29. Kou, J., Dou, D., and Yang, L. (2017). Porphyrin Photosensitizers in Photodynamic Therapy and its Applications. Oncotarget 8 (46), 81591–81603.
30. Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem. 2021 Aug 2;9:686303.
31. Manisekaran R. (2018) Introduction to Nanomedicine and Cancer Therapy. In: Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Cham.
32. Bremer-Hoffmann, S., Halamoda-Kenzaoui, B., and Borgos, S. E. (2018). Identification of Regulatory Needs for Nanomedicines. J. Interdiscip. Nanomedicine 3 (1), 4–15. doi:10.1002/jin2.34)
33. Rosenblum, D., Joshi, N., Tao, W. et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9, 1410 (2018).
34. Bidram, Elham et al. “A concise review on cancer treatment methods and delivery systems.” Journal of Drug Delivery Science and Technology 54 (2019): 101350.)
35. Thomas RG, Surendran SP, Jeong YY. Tumor Microenvironment-Stimuli Responsive Nanoparticles for Anticancer Therapy. Front Mol Biosci.
36. Yu J, Chu X, Hou Y, Stimuli-responsive cancer therapy based on nanoparticles, Chem Commun (Camb). 2014 Oct 11; 50(79):11614-30.
37. Jhaveri AM, Torchilin VP , Multifunctional polymeric micelles for delivery of drugs and siRNA, Front Pharmacol. 2014; 5():77)
38. Mi P, Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics, , Theranostics. 2020; 10(10):4557-4588.)
39. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G, Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements; Biomolecules. 2019 Nov 13; 9(11))
40. Muz B, de la Puente P, Azab F, Azab AK, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia (Auckl). 2015; 3():83-92).
41. Thambi T, Son S, Lee DS, Park JH, Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery, Acta Biomater. 2016 Jan; 29():261-270)
42. J.D. Twibanire, T.B. Grindley, Polyester dendrimers: smart carriers for drug delivery, Polymers, 6 (1) (2014), pp. 179-213)
43. S. Kalepu, V. Nekkanti, Insoluble drug delivery strategies: review of recent advances and business prospects, Acta Pharm. Sin. B 5 (5) (2015) 442–4)
44. T. Lian, R.J. Ho, Trends and developments in liposome drug delivery systems, J. Pharm. Sci., 90 (6) (2001), pp. 667-680)
45. V. Sanna, N. Pala, M. Sechi, Targeted therapy using nanotechnology: focus on cancer, Int. J. Nanomed. 9 (2014) 467.)
46. L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev. 64 (2012) 206–212).
47. D. Ag Seleci, et al., Niosomes as nanoparticular drug carriers: fundamentals and recent applications, J. Nanomater. 2016 (2016).)
48. P. Ekambaram, A.A.H. Sathali, K. Priyanka, Solid lipid nanoparticles: a review, Sci. Rev. Chem. Commun. 2 (1) (2012) 80–102.)
49. Cunningham, Michael F. and Philip G. Jessop. “Carbon Dioxide-Switchable Polymers: Where Are the Future Opportunities?” Macromolecules (2019))
50. Siwach, A., Verma, P.K., Synthesis and therapeutic potential of imidazole containing compounds, BMC Chemistry 15, 12 (2021).
51. Fasih Bintang Ilhami, Ya-Tang Yang, Ai-Wei Lee, Yu-Hsuan Chiao, Jem-Kun Chen, Duu-Jong Lee, Juin-Yih Lai, and Chih-Chia Cheng, Hydrogen Bond Strength-Mediated Self-Assembly of Supramolecular Nanogels for Selective and Effective Cancer Treatment, Biomacromolecules 2021 22 (10), 4446-4457
52. Hee Dong Han, Ye Won Jeon, Ho Jin Kwon, Hat Nim Jeon, Yeongseon Byeon, Chong Ock Lee, Sun Hang Cho, Byung Cheol Shin, Therapeutic efficacy of doxorubicin delivery by a CO2 generating liposomal platform in breast carcinoma, Acta Biomaterialia, Volume 24, 2015, Pages 279-285, ISSN 1742-7061.
53. Shu Zhang, Yamin Yang, Sijia Liu, Rui Dong, and Zhiyu Qian, Influence of the Hypercapnic Tumor Microenvironment on the Viability of Hela Cells Screened by a CO2-Gradient-Generating Device, ACS Omega 2021 6 (40), 26773-26781
54. Coltescu A.R, Butnariu M, Sarac I. The Importance of Solubility for New Drug Molecules. Biomed Pharmacol J 2020;13(2)
55. Chai, Mingfeng & Zheng, Zhibo & Bao, Lei & Qiao, Weihong. (2014). CO2/N2 Triggered Switchable Surfactants with Imidazole Group. Journal of Surfactants and Detergents. 17. 383-390
56. Michael F. Cunningham and Philip G. Jessop, Carbon Dioxide-Switchable Polymers: Where Are the Future Opportunities?, Macromolecules 2019 52 (18), 6801-6816
57. Gupta, Mayuri & Svendsen, Hallvard. (2014). Temperature Dependent Enthalpy of CO2 Absorption for Amines and Amino Acids from Theoretical Calculations at Infinite Dilution. Energy Procedia. 63. 1106-1114

無法下載圖示 全文公開日期 2027/01/24 (校內網路)
全文公開日期 2027/01/24 (校外網路)
全文公開日期 2027/01/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE