簡易檢索 / 詳目顯示

研究生: 賴旭泓
Shiu-Hung Lai
論文名稱: 無油渦卷式空壓機散熱設計之數值與實驗整合研究
An Integrated Numerical and Experimental Investigation for Cooling Design of Oil-free Scroll Compressor
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 楊旭光
Shiu-guang Yang
陳呈芳
Cheng-fang Chen
向四海
Su-Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 157
中文關鍵詞: 散熱設計渦卷式空壓機
外文關鍵詞: cooling design, scroll compressor
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主體為無油渦卷式空壓機之散熱設計,其固定及繞動渦卷間的密閉腔體因往復進行壓縮產生熱能,使得整體系統溫度提高,為克服此散熱需求在轉動軸上安置風機以提供冷卻氣流;而空壓機的驅動馬達可供給空壓機及散熱風機轉動動能,以同時達到高壓輸出及散熱的功能。本案將藉由提升風機流量以及改變介於風機及空壓機間的分流擋板,使其氣流量能平均分配於前、後半部以吹向鰭片間。藉由CFD進行流場及溫度場的模擬分析後得知,問題點為前方出口排出風量不足,故吾人使用兩種改善方案,第一個規劃將分流擋板穿孔,並比較不同的數量及孔徑做評估分析;第二個是將原先的垂直式風向擋板改為平行式風向擋板,再依據觀察的流場適度地調整擋板外殼做改良設計,最後擇優進行實體製作以及溫度量測以驗證其成效。
數值模擬結果顯示,打孔式分流擋板之出口質量流率由原本的0.120 增加至0.146 ,整體散熱量由573.4w增加至627.7w,前後出口排熱差距為132.7w,而溫度量測於中心溫度下降8.0°C,週圍點溫度下降約1~6°C;平行式分流擋板之出口處質量流率由原本的0.120 增加至0.152 ,整體散熱量由573.4w增加至729.1w,前後出口排熱差距也由133.6w縮小至0.7w,而溫度量測於中心溫度下降8.5°C,週圍點溫度下降約2~8°C。因平行分流擋板的改良方式在質量流率、整體散熱量以及前後出口排熱差距皆優於打孔組,故以此模組進行實體製造以及量測。經實驗比對後得知整體溫度和模擬結果比較之誤差於7%以內,且經由修正模型可將誤差再縮至5%以內。本研究經由模擬量測各空壓機出風口質量流率以及入、出風口的溫度差後估計出模型散熱程度,再藉由流場可視化修改在分流擋板、散熱鰭片以及風扇外殼模型後,修正了原始模型在分流擋板處的迴流現象,不僅增加了出口處的總質量流率及整體系統的散熱量,也縮短前、後出風口處的質量流率差距,成功找出改善渦卷式空壓機散熱效益的方式,最後進行實驗證實其可行度。


This study intends to analyze and improve the cooling performance of the oil-free scroll compressor by integrating efforts from numerical simulation, mockup fabrication, and experimental verification. The operating procedure of compressor shows that the chambers between fixed and driving scrolls are keeping compressed and heating by the frictional dissipation energy. Thus, a centrifugal fan is installed on the compressor axis to generate airstream for transporting heat and cooling down the scroll temperature. Flow pattern inside the compressor is simulated by using the CFD code Fluent for design a superior fan. Also, the block board between the fan and compressor is redesigned and installed in parallel to ensure a uniform flow-rate distribution. In addition, the compressor cover is reshaped to a smaller size for guiding and increasing the cooling air flow. As a result, mass flow rate of the best model enlarges from the original 0.120 to 0.152 , which causes an extra 155.7w heat flux. And the highest temperature of scroll is reduced by 8.5°C due to the 0.7w difference between the dissipating heats from two compressor outlets. Thereafter, the new compressor prototype is manufactured via CNC and 3D-printing technologies. Consequently, an acceptable deviation (less than 5%) between CFD and test outcomes is identified on all cases considered in this work to validate the reliability of CFD approach. In summary, the accomplishment of this study not only attains a better compressor design, but also provides a systematic and reliable scheme to enhance performance for an oil-free scroll compressor.

摘要I ABSTRACTIII 致謝IV 目錄V 圖索引IX 表索引XIII 符號索引XV 第一章 緒論1 1.1前言1 1.2空壓機介紹及發展歷史5 1.3文獻回顧6 1.3.1風機外型設計及改良10 1.3.2鰭片最佳化12 1.3.3渦卷式壓縮機模擬13 1.4研究動機與目的14 1.5研究流程15 第二章 無油渦卷空壓機之基本理論20 2.1渦卷式空氣壓縮機作動原理及溫度假設20 2.2鰭片散熱原理27 2.2.1熱傳遞原理27 2.2.2鰭片之最佳間距30 2.3前傾式葉片及蝸型外殼流道設計37 2.3.1葉片之能量方程式39 2.3.2風機蝸型外殼設計43 第三章 數值方法46 3.1.統御方程式47 3.2.紊流模式理論51 3.3.數值計算方法54 3.3.1求解流程54 3.3.2離散化方程式56 3.3.3上風差分法58 3.3.4速度與壓力耦合59 3.4.邊界條件設定61 第四章 無油渦卷空壓機數值模擬與實驗66 4.1數值模擬原型簡介與模型建立66 4.1.1無油渦卷空壓機組成68 4.1.2前傾式風扇組成72 4.2熱源邊界設定確認與實驗驗證75 4.2.1密閉腔體定溫法75 4.2.2單點溫度梯度法79 4.2.3分析結果與熱源邊界條件選定79 4.3鰭片型態確認85 4.4性能比較標準設定及改良方向90 4.4.1性能比較標準設定90 4.4.2性能分析及改良方向94 第五章 新型無油渦卷空壓機之改良設計與實驗100 5.1風扇改良設計101 5.1.1原始風扇之流場分析及改善方向101 5.1.2改善結果及性能比較101 5.2分流擋板之打孔設計112 5.3改變擋板分流方式設計116 5.3.1模組設計與模擬結果116 5.3.2分流擋板模組最佳化122 5.4改良方案之成果與實驗數據驗證132 5.4.1實驗設備介紹132 5.4.2實驗與模擬結果比對145 5.4.3模擬模型修正148 第六章 結論與建議151 6.1結論151 6.2建議153 參考文獻155

[1]Bowerman, R. and Acosta, A., “Effect of the Volume on Performance of a Centrifugal Pump Impeller”, Trans. ASME, Vol. 79, pp. 1057-1069, 1957.
[2]Eck, I. B., “Fan : Design and Operations of Centrifugal, Axial-Flow and Cross-Flow Fans”, Pergamon Press, New York, 1973.
[3]Ray, D. and Swim, W. B., “Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of a F-C Centrifugal Fan Rotor”, Journal of Engineering for Power, Vol. 103, pp. 393-399, 1981
[4]Lin, S.C., “A Novel F-C Centrifugal Fan Design for Improved Performance”, Department of Mechanical Engineering Technical Report, Tennessee Technological University, 1982.
[5]吳慶財,“前傾式離心扇之實驗設計”,國立台灣工業技術學院機械工程技術研究所碩士論文,1993年。
[6]許宏祺,“Pentium 4 筆記型電腦冷卻風扇之實驗研究",國立台灣科技大學機械工程技術研究所碩士論文,2001年。
[7]Kraus, A.D., “Analysis and Evaluation of Extended Surface Thermal System”, Hemisphere Published, 1982.
[8]Sparrow, E. M. Baliga, B. R., and Patanker, S. V., “Forced Convection Heat Transfer from a Shrouded Fin Array with and without Tip Clearance”, Journal of Heat Transfer, ASME, Vol. 100, pp. 572-579, 1978.
[9]Sparrow, E. M., and Chyu, M. K., “Conjuate Forced Convection Conduction Analysis of Heat Transfer in a Plate Fin” Journal of Heat Transfer, ASME, Vol. 104, pp. 204-206, 1982.
[10]Sparrow, E. M. and Kadle, D. S., “Numerical and Experimental Study on Turbulent Heat Transfer and Fluid Flow in Longitudinal Fin Arrays”, Journal of Heat Transfer, ASME, Vol. 108, pp. 16-23, 1986.
[11]Kei, S. L. and Roop, L. M., “Effects of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Pakages” , IEEE Trans. Components,Hybrids Manuf. Technol., Vol. 12, NO. 4, 1989.
[12]Butterbaugh, M. A. and Kang, S. S., “Effect of Air Flow Bypass on the Performance of Heat Sinks in Electronic Cooling”, Advances in Electronic Packaging, ASME, Vol. 10-2, pp. 843-848, 1995.
[13]林堯舜,林正,“如何正確評估散熱片之散熱能力”,電腦與通訊,第五十期,1996年。
[14]Hayano, M., Nagatomo, S., Sakata, H.., and Hatori, M., “Performance Analysis of Scroll Compressor For AIR Conditioners,” Proceedings of the International Compressor Engineering Conference at Purdue, pp. 856-871, 1986.
[15]吳慶輝譯,漸開線渦卷式壓縮機幾何理論,機械月刊,第16卷第八期,第82-92頁,民國78年8月。
[16]賴慶峰,延伸漸開線形渦卷曲線之最佳化研究,國立交通大學機械工程研究所論文,民國83年。
[17]林坦蔚,“鋁合金渦卷式壓縮機渦卷之應力與動力分析”,國立交通大學機械工程研究所碩士論文,2002年。
[18]C. C. Lin, Y. C. Chang, K. Y. Liang, C. H. Hung, “Temperature and thermal deformation analysis on scrolls of scroll compressor”, Applied thermal engineering 25, pp. 1724–1739, 2005.
[19]Churchill, S. W. and Chu, H. H. S., “Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate”, Int. J. Heat Mass Transfer, Vol. 18, pp. 1323-1329, 1975.
[20]Eck, B., “Fans”, Pergamon Press, N. Y., 1975.
[21]Bleier, Frank P., “Fan Handbook, Selection, Application, and Design”, McGraw Hill, 1997.
[22]Ansys Fluent User’s Guide-14.5, ANSYS Inc. 2012.
[23]Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15,pp.1787-1806,1972.
[24]Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England, 1972.

QR CODE