簡易檢索 / 詳目顯示

研究生: 張維展
Wei-Chan Chang
論文名稱: 使用特徵與本徵模態分析設計之行動裝置雙頻無線區域網路天線
Dual Band WLAN Antenna Design for Mobile Devices Based on Mode Analysis
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 廖文照
Wen-Jiao Liao
馬自莊
Tzyh-Ghuang Ma
林丁丙
Ding-Bing Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 108
中文關鍵詞: 特徵模態分析字母型槽孔天線本徵模態分析共振腔天線場型切換
外文關鍵詞: CMA analysis, Letter type slot antenna, Eigenmode solver, Cavity backed antenna, Beam switching
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出兩款不同的天線設計,分別應用不同模態分析方法進行天線設
    計,透過特徵模態與本徵模態分析的輔助,使得天線設計過程得以簡化,同時滿
    足 WLAN 雙頻段的應用需求。
    論文中第一款設計為應用特徵模態分析之 Logo 型 WLAN 雙頻槽孔天線,其
    結構施作於印刷電路板上。Logo 型 WLAN 雙頻槽孔天線由兩組字母型槽孔組成,
    其低頻頻段由 DEL 型字母槽孔產生共振模態;而高頻則透過兩個模態以涵蓋完
    整頻段,頻率 5.25 GHz 的共振模態主要為兩個 L 型槽孔同時激發所產生,5.65
    GHz 則由第二個 L 型字母槽孔負責產生模態。透過特徵模態理論,分析天線表面
    金屬在不同特徵模態下所對應之電場分佈,所得分析結果有利於天線饋入位置的
    優化。
    第二款天線設計為應用本徵模態分析之 WLAN 雙頻共振腔天線,天線結構
    由高頻共振腔天線與低頻貼片天線整合而成,分別提供 WLAN 高低頻段之模態。
    透過本徵模態理論,分析共振腔的截止頻率分佈,並依據所得結果決定共振腔尺
    寸。同時為改善天線匹配結果,將所提出的金屬 Stub 饋入設計導入至天線結構中,
    最後透過腔體頂部的開槽設計,使天線產生輻射;天線的低頻 WLAN 操作頻段,
    係透過吾人所提出之貼片天線設計來涵蓋,並透過金屬銅柱整合兩天線的饋入結
    構,達到同時激發 WLAN 雙頻之目的。吾人將共振腔天線的結構特性延伸應用,
    增加腔體頂部槽孔數量,並透過射頻二極體模擬槽孔關閉的狀態,達到輻射場型
    切換的效果。


    This thesis proposes two different antenna designs, by applying different mode
    analysis methods. With the aid of characteristic mode and eigenmode analyses, the
    antenna design process can be simplified, while the dual-band WLAN operation needs
    can be met.
    The first part is a Logo-type slot antenna design based on characteristic mode
    analysis (CMA). The Logo-type slot antenna comprises two letter-shaped slots which
    are implemented on a printed circuit board. The low band is supported by the DEL-shape
    letter slot. The high band is covered by two resonant modes. One mode at 5.25 GHz is
    generated by two L-shaped slots, and the other mode at 5.65 GHz is generated by the
    second L-shaped slot. Through the CMA theory, the electrical current distribution of
    metal surface can be examined for different characteristic modes. The results can be
    forwarded for optimization antenna feeding positions.
    The second part is a cavity backed antenna design using the eigenmode solver
    approach. The antenna structure comprises a cavity backed antenna and a patch antenna,
    which provides dual-band WLAN operation. In order to determine the cavity sizes, the
    results of cut-off frequency are applied using the eigenmode solver. The stub feed
    structure is employed to improve antenna matching. The WLAN low band is excited by
    the patch antenna. The two antennas are integrated by the metal via to provide dual-band
    WLAN operation simultaneously. To implement the beam switching feature, the number
    of slots cut on the cavity are increased to four. To change the beam direction, the RF
    diodes are applied to control the slot opening state.

    摘要...................................................................................................................................I Abstract.............................................................................................................................II 目錄................................................................................................................................ III 圖目錄............................................................................................................................ VI 表目錄..............................................................................................................................X 第一章 緒論.................................................................................................................... 1 1.1. 研究背景.......................................................................................................... 1 1.2 論文組織.......................................................................................................... 3 第二章 應用特徵模態分析之 Logo 型 WLAN 雙頻槽孔天線................................. 4 2.1 前言.................................................................................................................. 4 2.2 特徵模態理論.................................................................................................. 6 A. 特徵值?? (Characteristic value)....................................................................... 8 B. 特徵角度?? (Characteristic angle)................................................................... 8 C. MS 值 (Modal significance value)...................................................................... 8 2.3 Logo 型 WLAN 雙頻槽孔天線特徵模態分析..............................................11 2.3.1 低頻共振路徑分析........................................................................................11 2.3.2 高頻共振路徑分析....................................................................................... 15 2.3.3 Logo 型 WLAN 雙頻槽孔天線特徵模態分析............................................ 18 2.4 Logo 型 WLAN 雙頻天線架構與設計......................................................... 19 2.4.1 天線結構演進............................................................................................... 19 2.4.2 天線共振機制分析....................................................................................... 22 IV 2.4.3 天線效能模擬結果....................................................................................... 24 2.5 天線設計參數分析........................................................................................ 28 耦合饋入微帶線長度 F1........................................................................... 28 耦合饋入微帶線長度 F2........................................................................... 30 天線接地面尺寸 Subx、Suby................................................................... 32 2.6 天線效能驗證................................................................................................ 35 2.7 小結................................................................................................................ 40 第三章 應用本徵模態分析之 WLAN 雙頻共振腔天線............................................ 41 3.1 前言................................................................................................................ 41 3.2 本徵模態理論與分析說明............................................................................ 43 3.3 共振腔天線本徵模態分析............................................................................ 45 3.4 WLAN 雙頻共振腔天線環境說明與架構................................................... 47 3.5 WLAN 雙頻共振腔天線設計與模擬分析................................................... 50 3.5.1 天線結構演進............................................................................................... 50 3.5.2 天線共振機制分析....................................................................................... 53 A. 低頻貼片天線 .................................................................................................. 53 B. 高頻共振腔天線 .............................................................................................. 58 3.5.3 天線效能模擬結果....................................................................................... 61 3.6 WLAN 雙頻共振腔天線參數分析............................................................... 68 貼片金屬長度 Patch_L............................................................................. 68 微帶線饋入長度 Strip_L、微帶線饋入寬度 Strip_W ......................... 69 共振腔頂部槽孔長度 Slot_L、共振腔頂部槽孔寬度 Slot_W ............ 72 共振腔頂部槽孔間距 Slot_gap .............................................................. 74 Stub 饋入高度 Stub_h ............................................................................. 75 3.7 天線效能驗證................................................................................................ 77 V 3.8 高頻共振腔天線場型切換............................................................................ 85 3.9 小結................................................................................................................ 90 第四章 結論.................................................................................................................. 91 參考文獻........................................................................................................................ 92

    [1] J. J. Borchardt and T. C. Lapointe, "U-Slot Patch Antenna Principle and Design
    Methodology Using Characteristic Mode Analysis and Coupled Mode Theory,"
    in IEEE Access, vol. 7, pp. 109375-109385, 2019.
    [2] Ansys,"Finite Difference Eigenmode solver introduction," [online] Available:
    https://support.lumerical.com/hc/en-us/articles/360034917233-MODE-FiniteDifference-Eigenmode-FDE-solver-introduction, archived July 2021.
    [3] G. Gao, R. -F. Zhang, W. -F. Geng, H. -J. Meng and B. Hu, "Characteristic Mode
    Analysis of a Nonuniform Metasurface Antenna for Wearable Applications,"
    in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 8, pp. 1355-1359,
    Aug. 2020.
    [4] H. R. Stuart, "Eigenmode Analysis of Small Multielement Spherical Antennas,"
    in IEEE Transactions on Antennas and Propagation, vol. 56, no. 9, pp. 2841-2851,
    Sept. 2008.
    [5] J. -F. Ke, M. Chou, Z. C. Zhang and W. -J. Liao, "A Dual-Band WLAN Antenna
    Design for Placement in Hinges of Convertible Notebooks," 2019 Cross Strait
    Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC),
    2019, pp. 1-2.
    [6] K. Wong and C. Huang, "Triple-Wideband Open-Slot Antenna for the LTE MetalFramed Tablet device," in IEEE Transactions on Antennas and Propagation, vol.
    63, no. 12, pp. 5966-5971, Dec. 2015.
    [7] Y. Liu, W. Cui, Y. Jia and A. Ren, "Hepta-Band Metal-Frame Antenna for
    LTE/WWAN Full-Screen Smartphone," in IEEE Antennas and Wireless
    Propagation Letters, vol. 19, no. 7, pp. 1241-1245, July 2020.
    93
    [8] C. Lee, S. Su, S. Chen and C. Fu, "Low-Cost, Direct-Fed Slot Antenna Built in Metal
    Cover of Notebook Computer for 2.4-/5.2-/5.8-GHz WLAN Operation," in IEEE
    Transactions on Antennas and Propagation, vol. 65, no. 5, pp. 2677-2682, May
    2017.
    [9] J. Chou, J. Chang, D. Lin, H. Li and T. Wu, "A Compact Loop-Slot Mode
    Combination Antenna for Ultra-Thin Tablet Computer With Metallic Bottom
    Cover," in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 746-749,
    2014.
    [10] T. Ali, A. Kavinamoole, S. B K and R. C. Biradar, "A Toyota Logo Penta-band
    Antenna loaded with pi and inverted L-shaped Slots for Multiple Wireless
    Applications," 2018 4th International Conference on Applied and Theoretical
    Computing and Communication Technology (iCATccT), 2018.
    [11] Y. L. Chow and C. W. Fung, "The City University logo patch antenna," Proceedings
    of 1997 Asia-Pacific Microwave Conference, 1997.
    [12] R. F. Harrington and J. R. Mautz, "Theory of characteristic modes for conducting
    bodies", IEEE Trans. Antennas Propag., vol. 19, pp. 622-628, 1971.
    [13] R. Harrington and J. Mautz, "Computation of characteristic modes for conducting
    bodies," in IEEE Transactions on Antennas and Propagation, vol. 19, no. 5, pp. 629-
    639, September 1971.
    [14] M. Cabedo-Fabres, E. Antonino-Daviu, A. Valero-Nogueira and M. F. Bataller,
    "The Theory of Characteristic Modes Revisited: A Contribution to the Design of
    Antennas for Modern Applications," in IEEE Antennas and Propagation Magazine,
    vol. 49, no. 5, pp. 52-68, Oct. 2007.
    [15] Y. Chen and C. Wang, "Characteristic-Mode-Based Improvement of Circularly
    Polarized U-Slot and E-Shaped Patch Antennas," in IEEE Antennas and Wireless
    Propagation Letters, vol. 11, pp. 1474-1477, 2012.
    [16] Fritz-Andrade, E., Perez-Miguel, A., Gomez-Villanueva, R., & Jardon-Aguilar, H.
    (2020). Characteristic mode analysis applied to reduce the mutual coupling of a fourelement patch MIMO antenna using a defected ground structure. IET Microwaves,
    Antennas and Propagation, 14(2), pp. 215–226.
    [17] R. J. Garbacz, "Modal expansions for resonance scattering phenomena," in
    Proceedings of the IEEE, vol. 53, no. 8, pp. 856-864, Aug. 1965.
    [18] Perotoni, Marcelo B., Silva, Felipe A. A. da and Silva, Leandro A. daCharacteristic
    Mode Analysis applied to antennas. Revista Brasileira de Ensino de Física [online].
    2020, pp. 42.
    [19] N. L. Bohannon and J. T. Bernhard, "Design Guidelines Using Characteristic Mode
    Theory for Improving the Bandwidth of PIFAs," in IEEE Transactions on Antennas
    and Propagation, vol. 63, no. 2, pp. 459-465, Feb. 2015.
    [20] X. Yang, Y. Liu and S. Gong, "Design of a Wideband Omnidirectional Antenna
    With Characteristic Mode Analysis," in IEEE Antennas and Wireless Propagation
    Letters, vol. 17, no. 6, pp. 993-997, June 2018.
    [21] Peng Chen, Zheqiang Wu and Guangli Yang, "A wideband WLAN 2.4/5.2/5.8GHz
    MIMO antenna based on cavity mode in full metal cover tablet computer," 2016
    Progress in Electromagnetic Research Symposium (PIERS), 2016, pp. 2779-2781.
    [22] R. Chandra, "Cavity-backed slot antenna for thin wireless portable devices," 2017
    11th European Conference on Antennas and Propagation (EUCAP), pp. 1984-1987,
    2017.
    [23] H. Chen, X. Yang, Y. Z. Yin, S. T. Fan and J. J. Wu, "Triband Planar Monopole
    Antenna With Compact Radiator for WLAN/WiMAX Applications," in IEEE
    Antennas and Wireless Propagation Letters, vol. 12, pp. 1440-1443, 2013.
    [24] H. Huang, Y. Liu, S. Zhang and S. Gong, "Multiband Metamaterial-Loaded
    Monopole Antenna for WLAN/WiMAX Applications," in IEEE Antennas and
    Wireless Propagation Letters, vol. 14, pp. 662-665, 2015.
    [25] W. Li, Z. Xia, B. You, Y. Liu and Q. H. Liu, "Dual-Polarized H-Shaped Printed Slot
    Antenna," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1484-
    1487, 2017.
    [26] C. Sim, Y. Liao and H. Lin, "Polarization Reconfigurable Eccentric Annular Ring
    Slot Antenna Design," in IEEE Transactions on Antennas and Propagation, vol. 63,
    no. 9, pp. 4152-4155, Sept. 2015.
    [27] H. Yang, J. Lu, C. Lin, C. Song and G. Gao, "Design of Wideband Cavity-Backed
    Slot Antenna With Multilayer Dielectric Cover," in IEEE Antennas and Wireless
    Propagation Letters, vol. 15, pp. 861-864, 2016.
    [28] Y. Yoon and B. Lee, "A Cavity-Backed Traveling Wave Antenna for Tri-Band GPS
    Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp.
    1454-1457, 2016.
    [29] Q. Wu, J. Yin, C. Yu, H. Wang and W. Hong, "Broadband Planar SIW CavityBacked Slot Antennas Aided by Unbalanced Shorting Vias," in IEEE Antennas and
    Wireless Propagation Letters, vol. 18, no. 2, pp. 363-367, Feb. 2019.
    [30] Z. Zhang, X. Cao, J. Gao, S. Li and J. Han, "Broadband SIW Cavity-Backed Slot
    Antenna for Endfire Applications," in IEEE Antennas and Wireless Propagation
    Letters, vol. 17, no. 7, pp. 1271-1275, July 2018.
    [31] WIKIPEDIA, "IEEE 802.11 Standard," [online] Available: https://en.wikipedia.org/
    wiki/IEEE_802.11, archived July 2021.
    [32] D. Sun, W. Dou, L. You, X. Yan and R. Shen, "A Broadband Proximity-Coupled
    Stacked Microstrip Antenna With Cavity-Backed Configuration," in IEEE Antennas
    and Wireless Propagation Letters, vol. 10, pp. 1055-1058, 2011.
    [33] J. Petráček, "Simulation of Kerr-nonlinear waveguide structures by an eigenmode
    expansion method," Numerical Simulation of Optoelectronic Devices, 2014, pp.
    53-54.
    [34] Z. Zhao, H. Li, M. Mantash and T. A. Denidni, "Eigenmode Analysis of PrintedRidge-Gap-Waveguide Cavity and Its Application to Antenna design," 2019 IEEE
    International Symposium on Antennas and Propagation and USNC-URSI Radio
    Science Meeting, 2019, pp. 323-324.
    [35] D. Sun, W. Dou, L. You, X. Yan and R. Shen, "A Broadband Proximity-Coupled
    Stacked Microstrip Antenna With Cavity-Backed Configuration," in IEEE Antennas
    and Wireless Propagation Letters, vol. 10, pp. 1055-1058, 2011

    無法下載圖示 全文公開日期 2026/08/20 (校內網路)
    全文公開日期 2026/08/20 (校外網路)
    全文公開日期 2026/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE