簡易檢索 / 詳目顯示

研究生: 吳承威
WILSON WU YEH
論文名稱: 經由干擾估測及固定時間補償的戶外多架無人飛機之跟隨控制
Outdoor Multi-UAV Following Control Using Real-Time Disturbance Estimation and Fixed-Time Compensation
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 陳永耀
林柏廷
連豊力
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 58
中文關鍵詞: 即時干擾估測固定時間追隨控制多架無人機抗風性李雅普諾夫穩定性理論
外文關鍵詞: Real-time disturbance estimation, Fixed-time following control, Multiple UAVs wind resistance Lyapunov stability theory
相關次數: 點閱:31下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計一種用於戶外多架無人機追隨控制的即時干擾估測與固定時間補償(RTDE-FTC)方法,以解決具有干擾的追隨控制問題。所建議的控制器可應用於不同的內迴路PID控制的無人機,而所設計的多架無人機追隨控制的即時干擾估測與固定時間補償,將應用於其外迴路的二階系統並具有未知干擾,例如,感知器雜訊、系統不確定性或額外的陣風。為執行監控任務,定義虛擬領導者為領隊飛行無人機的期望三維路徑。每架跟隨無人機以RTDE-FTC控制追隨前面的無人機,以維持所設定編隊。所設計的追隨控制器包括兩部分:(i)等效控制管理相鄰無人機之間的距離和即時干擾補償,(ii)使用具有非線性增益的切換控制,以處理每架無人機內部的干擾或額外的陣風,確保穩健的隊形飛行。切換增益會在接近零耦合追隨誤差時自動放大,以應付更多的不確定性及實現快速的有限時間追蹤能力。最後,比較與內迴路PID控制(無論是否有額外陣風的干擾),並以兩種三維軌跡隊形,證實所提出之RTDE-FTC的有效性及優越性。


    In this thesis, a real-time disturbance estimation and fixed-time compensation (RTDE-FTC) for outdoor multi-UAV following control is designed to tackle following control with disturbance. In contrast to the inner-loop PID control in each UAV, the outer loop control design employs a second-order system representation to accommodate unknown disturbances such as wind gusts, system parameter uncertainties, and initial pose and velocity errors. To perform a surveillance task, a virtual leader defines the desired 3D path for a team of UAVs flying in formation. Each UAV follows the one in front, while the RTDE-FTC control system guarantees their coordinated movement. The proposed following control includes two strategies: (i) equivalent control manages the distance between neighboring UAVs and real-time compensates the estimated disturbances, and (ii) switching control with a nonlinear gain tackles individual uncertainties within each drone and the remaining uncertainties to ensure a robust formation flight. To achieve fast finite-time convergence, the switching gain automatically scales up near zero coupled error. Finally, the comparison with inner-loop PID control with and without extra wind disturbance are presented to confirm superiority of the proposed RTDE-FTC

    摘要 4 ABSTRACT 5 TABLE OF CONTENT 6 LIST OF FIGURES 8 LIST OF TABLES 10 CHAPTER 1. INTRODUCTION 11 CHAPTER 2. PROBLEM FORMULATION 14 CHAPTER 3. REAL-TIME DISTURBANCE ESTIMATION AND FIXED TIME COMPENSATION 18 3.1 Mathematical Preliminaries 18 3.2 RTDE-FTC 18 3.3 Stability Analysis 21 CHAPTER 4. SIMULATIONS 26 4.1 Path 1 26 4.2 Path 2 30 CHAPTER 5. EXPERIMENTS 34 5.1 Experimental Apparatus 34 5.1.1 Quadcopter Frame 34 5.1.2 Flight Controller 35 5.1.3 Motors 38 5.1.4 ESC 39 5.1.5 Propeller 39 5.1.6 GPS 40 5.1.7 Onboard Computing Unit 40 5.1.8 Wireless Connection 41 5.1.9 Battery 42 5.1.10 Remote Controller 42 5.2 Experiment Scenario 44 5.3 Experimental Results 45 CHAPTER 6. CONCLUSION AND FUTURE STUDIES 53 REFERENCE 54

    [1] L. Hu and Q. Ni, “IoT-driven automated object detection algorithm for urban surveillance systems in smart cities,” IEEE Internet Things J., vol. 5, no. 2, pp. 747–754, Apr. 2018.
    [2] Y. Yao, Y. Sun, C. Phillips, and Y. Cao, “Movement-aware relay selection for delay-tolerant information dissemination in wildlife tracking and monitoring applications,” IEEE Internet Things J., vol. 5, no. 4, pp. 3079–3090, Aug. 2018.
    [3] M. Wan, G. Gu, W. Qian, K. Ren, X. Maldague, and Q. Chen, “Unmanned aerial vehicle video-based target tracking algorithm using sparse representation,” IEEE Internet Things J., vol. 6, no. 6, pp. 9689-9706, Dec. 2019.
    [4] S. Aggarwal, N. Kumar, and S. Tanwar, “Blockchain-envisioned UAV communication using 6G networks: open issues, use cases, and future directions,” IEEE Internet Things J., vol. 8, no. 7, pp. 5416–5441, Apr. 2021.
    [5] H. Shi, G. Liu, K. Zhang, Z. Zhou, and J. Wang,” MARL Sim2real Transfer: Merging physical reality with digital virtuality in metaverse,” IEEE Trans. Syst. Cybern: Syst., vol. 53, no. 4, pp. 210-21177, Apr. 2023.
    [6] M. Samir, S. Sharafeddine, C. M. Assi, T. M. Nguyen, and A. Ghrayeb, “UAV trajectory planning for data collection from time-constrained IoT devices,” IEEE Trans. Wireless Communication, vol. 19, no. 1, pp. 34-46, Jan. 2020.
    [7] D. Liu, W. Bao, X. Zhu, B. Fei, T. Men, and Z. Xiao, “Cooperative path optimization for multiple UAVs surveillance in uncertain environment,” IEEE Internet Things J., vol. 9, no. 13, pp. 10676-10692, Jul. 2022.
    [8] J. Chen, C. Du, Y. Zhang, P. Han, and W. Wei, “A clustering-based coverage path planning method for autonomous heterogeneous UAVs,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 12, pp. 25546-25556, Dec. 2022.
    [9] N. Rong and Z. Wang, “Fixed-time stabilization for IT2 T–S fuzzy interconnected systems via event-triggered mechanism: an exponential gain method,” IEEE Trans. Fuzzy Syst., vol. 28, no. 2, pp. 246-258, Feb. 2020.
    [10] Q. Hu, Y. Shi, and C. Wang, "Event-based formation coordinated control for multiple spacecraft under communication constraints," IEEE Trans. Sys., Man, Cybern.: Syst.,vol. 21, no. 5, pp. 3168-3179, May 2021.
    [11] Y. Zhou, H. He, and C. Sun, "Fully distributed finite-time consensus of directed multiquadcopter systems via pinning control," IEEE Trans. Sys., Man, Cybern.: Syst., vol. 51, no. 8, pp. 5080-5089, Aug. 2021.
    [12] P. Du, Y. Pan, H. Li, and H.-K. Lam, “Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2088-2099, Aug. 2021.
    [13] J. Sawant, U. Chaskar, and D. Ginoya, “Robust control of cooperative adaptive cruise control in the absence of information about preceding vehicle acceleration,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 9, pp. 5589-5598, Sep. 2021.
    [14] B. S. Chen, C. P. Wang, and M. Y. Lee, "Stochastic robust team tracking control of multi-UAV networked system under Wiener and Poisson random fluctuations," IEEE Trans. Cybern., vol. 51, no. 12, pp. 5786-5799, Dec. 2021.
    [15] Y. Liu, H. Zhang, J. Sun, and Y. Wang, “Adaptive fuzzy containment control for multiagent systems with state constraints using unified transformation functions,” IEEE Trans. Fuzzy Syst., vol. 30, no. 1, pp. 162-174, Jan. 2022.
    [16] Y. Salmanpour, M. M. Arefi, A. Khayatian, and O. Kaynak, “Event-triggered fuzzy adaptive leader-following tracking control of nonaffine multiagent systems with finite-time output constraint and input saturation,” IEEE Trans. Fuzzy Syst., vol. 30, no. 4, pp. 933-944, Apr. 2022.
    [17] H. Chen, Y. Cong, X. Wang, X. Xu, and L. Shen, “Coordinated path-following control of fixed-wing unmanned aerial vehicles,” IEEE Trans. Syst. Cybern: Syst., vol. 52, no. 4, pp. 2540-2553, Apr. 2022.
    [18] Y. Zou, H. Zhang, and W. He, "Adaptive coordinated formation control of heterogeneous vertical takeoff and landing UAVs subject to parametric uncertainties," IEEE Trans. Cybern., vol. 52, no. 5, pp. 3184-3195, May 2022.
    [19] G. Feng, D. Dang, and Y. He, “Robust coordinated control of nonlinear heterogeneous platoon interacted by uncertain topology,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6, pp. 4982-4992, Jun. 2022.
    [20] A. V. Savkin and H. Huang, “Navigation of a UAV network for optimal surveillance of a group of ground targets moving along a road,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9281-9285, Jul. 2022.
    [21] Z. Zhang, L. Zheng, Y. Zhou, and Q. Guo, “A novel finite-time-gain-adjustment controller design method for UAVs tracking time-varying targets,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 12531-12543, Aug. 2022.
    [22] C.-L. Hwang and H. B. Abebe, “Generalized and heterogeneous nonlinear dynamic multiagent systems using online RNN-based finite-time formation tracking control and application to transportation systems,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 13708-13720, Aug. 2022.
    [23] J. Lan, Y.-J. Liu, T. Xu, S. Tong, and L. Liu, “Adaptive fuzzy fast finite-time formation control for second-order MASs based on capability boundaries of agents,” IEEE Trans. Fuzzy Syst., vol. 30, no. 9, pp. 3905-3918, Sep. 2022.
    [24] Z. Yu, Y. Zhang, B. Jiang, C.-Y. Su, J. Fu, Y. Jin, and T. Chai, “Enhanced recurrent fuzzy neural fault-tolerant synchronization tracking control of multiple unmanned airships via fractional calculus and fixed-time prescribed performance function,” IEEE Trans. Fuzzy Syst., vol. 30, no. 10, pp. 4515-4529, Oct. 2022.
    [25] H. Zhou, S. Sui, S. Tong, “Fuzzy adaptive finite-time consensus control for high-order nonlinear multiagent systems based on event-triggered,” IEEE Trans. Fuzzy Syst., vol. 30, no. 11, pp. 4891-4904, Nov. 2022.
    [26] Z. Wang, T.i Hu, and L. Long, “Multi-UAV safe collaborative transportation based on adaptive control barrier function,” IEEE Trans. Syst. Cybern: Syst., vol. 53, no. 11, pp. 6975-6983, Nov. 2023.
    [27] C.-L. Hwang and Y. H. Chen, “Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error,” IEEE Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1464-1476, Jul. 2020.
    [28] C.-L. Hwang and B. S. Chen, “Adaptive finite-time saturated tracking control for a class of partially known robots,” IEEE Trans. Syst., Man and Cybern.: Syst., vol. 51, no.9, pp. 5674-5684, Sep. 2021.
    [29] C.-L. Hwang, F. C. Weng, D. S. Wang, and F. Wu, “Experimental validation of speech improvement based adaptive stratified finite-time saturation control of omnidirectional service robot,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 2, pp. 1317-1330, Feb. 2022.
    [30] I. Lopez-Sanchez, J. Moyrón, J. Moreno-Valenzuela, “Adaptive neural network-based trajectory tracking outer loop control for a quadrotor,” Aerospace Sci. Technol., vol. 129, p 107847, 2021.
    [31] C.-L. Hwang, C. C. Chiang, and Y. W. Yeh, “Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain under-actuated nonlinear dynamic systems,” IEEE Trans. Fuzzy Syst., vol. 22, no. 2, pp. 286-297, Apr. 2014.
    [32] C.-L. Hwang, H. M. Wu, and J. Y. Lai, “On-line obstacle detection, avoidance and mapping of an outdoor quadrotor using EKF based fuzzy tracking incremental control,” IEEE Access, vol. 7, pp. 160203-160216, 2019.
    [33] C.-L. Hwang, J. Y. Lai, and Z. S. Lin, “Sensor-fused fuzzy variable structure incremental control for partially known nonlinear dynamic systems and application to an outdoor quadrotor,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2, pp. 716-727, Apr. 2020.
    [34] C.-L. Hwang, "Fuzzy fixed-time following control for multiple UAVs with input fault and saturation," 2023 International Conference on Advanced Robotics and Intelligent Systems (ARIS), pp. 1-6, Oct. 2023.

    QR CODE