簡易檢索 / 詳目顯示

研究生: 蘇偉豪
Wei-Hao Su
論文名稱: 用於正交分頻多工系統之多天線檢測實作
Implementation of MIMO Detection for OFDM Systems
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 林銘波
Ming-Bo Lin
吳乾彌
Chen-Mie Wu
沈中安
Chung-An Shen
張縱輝
Tsung-Hui Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 51
中文關鍵詞: 封包錯誤率
外文關鍵詞: Max-log MAP
相關次數: 點閱:161下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對 MIMO OFDM系統提出Maximum-logarithm(Max-log) Maximum A Posteriori Probability (MAP)檢測器演算法之設計與實現,我們分別比較Zero-Forcing(ZF)與Max-log MAP兩種不同的演算法於Rayleigh fading channel的SISO模式和MIMO模式下的封包錯誤率。在SISO模式時,由於通道係數只有傳送端天線1對上接收端天線1,並不會受到其他天線干擾,故兩種演算法在模擬結果上差異不大,然而在 MIMO模式時,傳送端天線1及天線2的資料會因為通道而互相影響再加上多路徑散射的影響的情況下傳至接收端天線1及天線2,通道的情況會比SISO模式時更加複雜許多。從模擬結果可得知,在MIMO模式時,Max-log MAP演算法在封包錯誤率上的表現比ZF演算法好上許多,但是在硬體實現電路的面積上,由於Max-log MAP演算法所使用的邏輯數量比ZF演算法還要多,故面積相對的也大了一些。本論文以實現Max-log MAP演算法為目標,並採用Verilog硬體描述語言設計,利用Xilinx ISE進行合成,最後將電路實現於FPGA開發板上。


This thesis proposes the design and implementation of a Maximum-logarithm (Max-log) Maximum A Posteriori probability (MAP) detection algorithm for MIMO-OFDM systems. We compare the packet error rates of the Zero-Forcing (ZF) algorithm and Max-log MAP in SISO and 2x2 MIMO configurations with Rayleigh fading channel. In SISO configuration, since there is only one antenna at the transmitter and at the receiver, there is no interference and the difference in performance of both algorithms is not significant. In 2x2 MIMO configuration there is mutual interference between both transmit antennas, and the information is transmitted along the multipath fading channel to two receive antennas. Hence the channel conditions are more complex than in the case of SISO. Simulation results show that in MIMO configuration the packet error rate of Max-log MAP is much better than ZF. However, since the logic count of Max-log MAP is higher than ZF, the circuit area required by Max-log MAP is also higher. In this thesis, using Verilog HDL for design and Xilinx ISE for circuit synthesis, we implement the Max-log MAP algorithm on an FPGA development board.

章節目錄 圖目錄 v 表目錄 vii 第一章 緒論 1 第二章 OFDM系統架構 3 2.1 正交分頻多工系統 3 2.1.1 OFDM的調變(Modulation) 3 2.1.2 OFDM的正交姓(Orthogonality) 4 2.1.3 OFDM的解調變(Demodulation) 5 2.1.4 OFDM調變/解調變的數位化 6 2.1.5 護衛區間(Guard interval)與循環字首(Cyclic Prefix) 7 2.2 多輸入多輸出系統 8 2.2.1 循環位移分集技術(Cyclic Shift Diversity,CSD) 9 2.3 封包架構 10 2.4 傳送端與接收端架構 12 第三章 實作平台 15 3.1 Warp v3 FPGA開發板 15 3.2 模擬工具與平台 16 3.2.1 產生Netlist方式 17 3.2.2 XPS 18 3.2.3 SDK 19 3.2.4 Xilinx ISE Design Tool 20 第四章 MIMO檢測演算法 21 4.1 通道模型 21 4.2 Zero-Forcing演算法 21 4.3 最大事後機率演算法(Maximum A Posteriori algorithm) 22 第五章 MIMO檢測電路設計 27 5.1 電路設計流程 27 5.2 演算法電路設計 30 5.2.1 Zero-Forcing演算法電路架構 30 (a) 通道係數之伴隨矩陣(Adjugate Matrix of H) 31 (b) 複數乘法器(Complex Multiplexer) 32 (c) 行列式(Determinant) 32 (d) 複數除法器(Complex Divider) 33 5.2.2 Max-log MAP演算法電路架構 34 (a) Candidate List 36 (b) 比較電路(Compare Circuit) 37 (c) Max-log MAP電路優化 38 第六章 模擬結果與分析 41 6.1 錯誤率檢測系統 42 6.1.1 Bit Error Rate(BER) 42 6.1.2 Packet Error Rate(PER) 43 6.2 SISO在Rayleigh fading channel之PER比較 44 6.3 MIMO在AWGN之PER比較 45 6.2 MIMO在Rayleigh fading channel之PER比較 46 第七章 結論 47 參考文獻 48

[1] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications. IEEE Std 802.11, 1999.
[2] IEEE 802.11a, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 5 GHz Band. IEEE Std802.11a, 1999.
[3] IEEE 802.11g, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 2.4 GHz Band. IEEE Std802.11g, 2003.
[4] IEEE 802.11n, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 2.4 GHz Band. IEEE Std802.11n, 2009.
[5] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. (Geoffrey) Li, M. A. Ingram and T. G. Pratt “Broadband MIMO-OFDM Wireless Communications,” in Proceedings of the IEEE, vol. 92, no. 2, Feb. 2004, pp.271-294.
[6] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using Fourier transform,” IEEE Trans. Commun. Technol., vol. COM-19, Oct. 1971, pp.628-634.
[7] A. Peled and A. Ruiz, ”Frequency domain data transmission using reduced computational complexity algorithms,” IEEE int. Conf. Acoust., Speech, Signal Processing,1980, pp. 964-967.
[8] C. Wang and Edward K. S. Au, “On the Performance of the MIMO Zero-Forcing Receiver in the Presence of Channel Estimation Error,” IEEE Trans in Wireless Commun., vol. 6, no. 3, Mar. 2007, pp.805-810
[9] S. G. Kim, D. Yoon, S. K. Park, and Z. Xu, “Performance analysis of the MIMO zero-forcing receiver over continuous flat fading channels,” in Proc. of IEEE Information Sciences and Interaction Sciences (ICIS), 2010 3rd International Conference on, Jun. 2010, pp.324-327.
[10] M. R. McKay and I. B. Collings, “Capacity and Performance of MIMO-BICM With Zero-Forcing Receivers,” IEEE Trans. on commun., vol. 53, no. 1, Jan. 2005, pp.74-83.
[11] H. Prabhu, O. Edfors, J. Rodrigues, L. Liu, and F. Rusek, “Hardware Efficient Approximative Matrix Inversion for Linear Pre-coding in Massive MIMO,” in Proc. of IEEE Circuits and Systems (ISCAS), 2014 IEEE International Symposium, pp.1700-1703.
[12] Amit Grover, Neeti Grover, Keshav Kumar, Moga Road and Ferozepur, “A Comparative Analysis in Equalization,” in Proc. of IEEE Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT), 2013 International Conference, pp.1-5.
[13] J. S. Hammerschmidt, N. Graef and S. A. Mujtaba, “A Maximum a Posteriori MIMO Detector Using Recursive Metric Computations,” IEEE Trans on Signal Processing, vol. 54, no. 9, Sep. 2006, pp.3555-3565.
[14] B. M. Hochwald and S. ten Brink, “Achieving Near-Capacity on a Multiple-Antenna Channel,” IEEE Trans. on Commun., vol. 51, no. 3, Mar. 2003, pp.389-399.
[15] N. Graef and J. S. Hammerschmidt, “A Low-Complexity Max-Log-MAP Detector,” IEEE Trans. on Commun., vol. 57, no. 8, Aug. 2009, pp.2251-2254.
[16] L. Sabeti, M. Ahmadi and K. Tepe, “New VLSI Design of a Max-Log-MAP Decoder,” in Proc. of IEEE Circuits and Systems, 2004. NEWCAS 2004. The 2nd Annual IEEE Northeast Workshop, pp.37-40.
[17] B. Lu, G. Yue and X. Wang, “Performance Analysis and Design Optimization of LDPC-Coded MIMO OFDM Systems,” IEEE Trans. on Signal Processing, vol. 52, no. 2, Feb. 2004, pp.348-361.
[18] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Prentice Hall, 2004.
[19] C. Tian, G. He, J. Wang, X. Chen and J. Ma, “Gbps Soft-output K-Best MIMO Detector Design with Relaxed Parallel Sorting,” in Proc. of IEEE Wireless Communications, Networking and Mobile Computing (WiCOM), 2012 8th International Conference, pp.1-4.
[20] Y. Sun and J. R, “A New MIMO Detector Architecture Based on A Forward-Backward Trellis Algorithm,” in Proc. of IEEE Signals, Systems and Computers, 2008 42nd Asilomar Conference, pp.1892-1896.
[21] Y. Tong, T. H. Yeap and J. Y. Chouinard, “VHDL Implementation of a Turbo Decoder With Log-MAP-Based Iterative Decoding,” IEEE Trans. on Instrumentation and Measurement, vol. 53, no. 4, Aug. 2004, pp.1268-1278.
[22] C. H. Lin and C. S. Yu, “Multimode Radix-4 SISO Kernel Design for Turbo/LDPC Decoding,” IEEE Trans. on Very Large Scale Intergration (VLSI) Systems, pp.1-12.
[23] A. Ardakani and M. Shabany, “A Novel Area-Efficient VLSI Architecture for Recursion Computation in LTE Turbo Decoders,” IEEE Trans. on Circuit and Systems—II: EXPRESS BRIEFS, vol. 62, no. 6, Jun. 2015, pp.568-572.
[24] W.Y. Zou and Y. Wu, “COFDM: An overview,” IEEE Trans. on Broadcasting, vol. 41, no. 1, Mar. 1995, pp. 1 –8.
[25] WARP Forums:http://warpproject.org/trac/wiki/HardwareUsersGuides/WARPv3
[26] 劉紹漢, 全華, SOC系統晶片設計-使用Xilinx EDK, 2014.
[27] 徐文波, 田耘, Xilinx FPGA開發實用教學, 佳魁資訊, 2013.
[28] S. M. Jackman, M. Swartz, M. Burton and T. W. Head, “Certified Wireless Design professional Official Study Guide” CWN Exam PW0-250, Feb. 2011, pp.340-343.
[29] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela,
“V-BLAST: An architecture for realizing very high data rates over rich scattering wireless channels,” in Proc. ISSSE-98, Sep. 1998, pp. 295-300.
[30] M. Honqlei and M. J. Juntti, ”Space-time channel estimation and performance analysis for wireless MIMO-OFDM systems with spatial correlation,” IEEE Trans. Vehic. Tech., vol. 54, Nov. 2005, pp. 2003-2016.
[31] IEEE Std 802.11a-1999 Supplement to IEEE Standard for Information
technology-telecommunications and information exchange between systems –
local and metropolitan area networks - specific requirements - Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
1999.
[32] P. Koopman, “32-bit cyclic redundancy codes for Internet applications”, in Proc. of IEEE Int. Conf. on Dependable Systems and Networks, Wash., DC, USA, Jun. 2002, pp. 459–468.

QR CODE