簡易檢索 / 詳目顯示

研究生: 江志善
Jhih-Shan Jiang
論文名稱: 應用可見光通訊技術於行動裝置之研究
Research of Applying Visible Light Communication on Mobile Device
指導教授: 周錫熙
Hsi-Hsir Chou
口試委員: 李志堅
Chih-Chien Lee
葉秉慧
Ping-hui Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 110
中文關鍵詞: 分時分波多工技術
外文關鍵詞: TWDM
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文分別透過使用振幅調變與相位調變之微投影架構與可見光通訊技術之結合,來進行可應用於第五代行動通訊(5G)裝置間短距離通訊技術之研究。
為實現指向性通訊與分時分波多工(Time and Wavelength Dividsion Multiplexing, TWDM)傳輸之技術,本論文分別在基於振幅調變與相位調變之微投影通訊架構中,透過使用矽基液晶元件為空間光調變器進行波前調製與動態光學濾波器之設計與實現。
從系統損耗分析得知,使用相位調變之微投影通訊架構不論在發射端進行指向性通訊之實現或是在接收端進行動態濾波器之設計以實現分時分波多工傳輸之技術,均有較高之傳輸效率與較低之雜訊干擾(Crosstalk)。
在數據傳輸測中,不論在振幅調變或是相位調變之微投影通訊架構中,在滿足位元錯誤率為10-3時,資料傳輸效能均優於目前商業使用中的短距離通訊之技術。


An experimental study of visible light communications based on amplitude and phase modulated micro-projection architecture for short range 5G device and device communication is presented in this thesis.
An Liquid Crystal on Silicon (LCoS) device was used as a Spatial Light Modulator (SLM) to modulate wavefronts for the implementation of beam steering and dynamically optical filter design in the wavelength division multiplexing, WDM-based micro-projection enabled communication architectures.
From the analysis of the system light loss, phase modulated micro-projection enabled communication architecture has a higher transmission efficiency and a lower crosstalk than amplitude modulated micro-projection enabled communication architecture when the functionality of beam steering and dynamically optical filtering were performed.
In the digital data transmission tests, the measurement results shown that the proposed micro-projection enabled communication architectures either based on amplitude or based on phase modulation, all have a better data transmission performance than the current development of short-range communication technologies.

目錄 摘要 ……………………………………………………...…………I Abstract ………………………………………………………………...II 致謝 ……………………………………………………………….III 目錄 ……………………………………………………………….IV 圖目錄 …………………………………………………………….VIII 表目錄 …………………………………………………………….XIII 第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 應用微投影架構結合可見光通訊技術 4 2.1 行動裝置之短距離通訊技術介紹 4 2.1.1 藍牙 4 2.1.2 ZigBee 4 2.1.3 可見光通訊 5 2.1.4 短距離通訊技術比較 6 2.2 可見光通訊技術與行動裝置之結合 6 2.3 微投影技術介紹 8 2.3.1 液晶投影技術 8 2.3.2 數位光處理技術Digital Light Processing, DLP 12 2.3.3 雷射掃描投影 (Scanned Laser Projector) 16 2.3.4 投影技術之比較 17 2.4 微投影架構與可見光通訊技術之結合 20 第三章 基於振幅調變之微投影通訊架構 21 3.1 振幅調變微投影通訊架構介紹 21 3.2 使用帶通光學濾波器實現分時分波多工之技術 22 3.2.1 濾波片原理 22 3.2.2 濾波片種類 25 3.2.3 光學濾波器性能測試 27 3.2.4 干擾量測(Crosstalk)與結果討論 27 3.3 以振幅調變微投影架構實現分時分波多工技術(LED光源) ……………………………………………………..…………30 3.3.1 系統對比度量測 30 3.3.2 干擾量測(Crosstalk)與結果討論 34 3.3.3 微投影通訊架構之接收機訊號分析 38 3.3.4 數據傳輸測試 47 3.4 LCoS動態光學濾波器性能改善(使用同調光源) 54 3.4.1 干擾量測(Crosstalk)與結果討論 55 3.4.2 數據傳輸測試 58 3.5 帶通光學濾波器與LCoS動態光學濾波器性能比較 67 第四章 基於相位調變之微投影通訊架構 69 4.1 相位調變微投影通訊架構介紹 69 4.2 指向性波束技術應用於發射端之研究 70 4.2.1 二階相位光柵 (Binary Phase Grating) 70 4.2.2 多階閃耀式光柵 (4-step Blazed Grating) 72 4.2.3 菲涅耳透鏡 (Fresnel Lens) 73 4.3 指向性波束控制技術之實現 75 4.3.1 實驗架構 75 4.3.2 二階相位光柵 77 4.3.3 四階閃耀式光柵 78 4.3.4 菲涅耳透鏡 79 4.3.5 指向性波束控制技術比較 81 4.4 數據傳輸測試(使用菲涅耳透鏡) 82 4.4.1 LED紅光量測 84 4.4.2 LED綠光量測 87 4.4.3 LED藍光量測 89 4.4.4 訊號傳輸測試分析 92 4.5 以相位調變之微投影通訊架構實現分時分波多工技術(使用同調光源) 93 4.5.2 LCoS動態光學濾波器設計 93 4.5.3 數據傳輸架構 94 4.5.4 數據傳輸測試 96 4.5.5 以振幅和相位架構實現光學濾波器與帶通光學濾波器比較 98 4.6 小結 98 第五章 結論 100 5.1 結果與討論 100 5.2 未來研究工作 103 參考文獻 104

[1] A. Gupta and R. K. Jha, "A Survey of 5G Network: Architecture and Emerging Technologies," in IEEE Access, vol. 3, no. , pp. 1206-1232, 2015.
[2] M. Fallgren et al., “Scenarios, Requirements and KPIs for 5G Mobile and Wireless System”, document ICT-317669-METIS/D1.1, Apr. 2013.
[3] Industry Proposal for a Public Private Partnership (PPP) in Horizon 2020 (Draft Version 2.1), Horizon 2020 Advanced 5G Network Infrastructure for the Future Internet PPP. [Online]. Available:
http//www.networks-etp-eu/_leadmin/user_upload/Home/draft-PPP-proposal.pdf
[4] H. H. Chou and C. Y. Tsai, "Demonstration of micro-projection enabled short-range communication system for 5G," Opt. Express 24, pp. 13075-13080, 2016.
[5] H. H. Chou et al., "RGB LEDs visible light communications based on equalized receiver with broadband optical filters," 2015 International Workshop on Fiber Optics in Access Network (FOAN), Brno, 2015, pp. 22-25.
[6] J. DeCuir, "Introducing Bluetooth Smart: Part 1: A look at both classic and new technologies.," in IEEE Consumer Electronics Magazine, vol. 3, no. 1, pp. 12-18, Jan. 2014.
[7] S. J. Halder, J.-G. Park, W. Kim, “Adaptive Filtering for Indoor Localization using ZIGBEE RSSI and LQI Measurement,” Adaptive Filtering Applications, INTECH publisher. pp. 305-324. InTech, 2011.
[8] L. H. Wang, T. Y. Chen, K. H. Lin, Q. Fang and S. Y. Lee, "Implementation of a Wireless ECG Acquisition SoC for IEEE 802.15.4 (ZigBee) Applications," in IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp. 247-255, Jan. 2015.
[9] G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, "Gigabit-class optical wireless communication system at indoor distances (1.5 – 4 m)," Opt. Express 23, 15700-15705, 2015
[10] F. M. Wu et al., "Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication," in IEEE Photonics Journal, vol. 5, no. 4, pp. 7901507-7901507, Aug. 2013.
[11] Y. Wang, R. Li, Y. Wang and Z. Zhang, "3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED," OFC 2014, San Francisco, CA, 2014, pp. 1-3.
[12] H. Chun et al., "LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications," in Journal of Lightwave Technology, vol. 34, no. 13, pp. 3047-3052, July1, 1 2016.
[13] D. Nesset, "NG-PON2 Technology and Standards," in Journal of Lightwave Technology, vol. 33, no. 5, pp. 1136-1143, March1, 1 2015.
[14] Y.C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, "450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM," Opt. Express 23, 13051-13059, 2015.
[15] M. Ilicic, "Digital cinema projectors," 47th International Symposium ELMAR , Zadar, pp. 83-86, 2005.
[16] T. Levola and P. Ayras, "Illumination of LCOS micro displays using planar lightguides," 2008 2nd Electronics System-Integration Technology Conference, Greenwich, 2008, pp. 815-818.
[17] Rong Hsu and Pei-Yuan Liu, "New challenges in LCOS technologies," The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004., 2004, pp. 106-107 Vol.1.
[18] M. Ogata, K. Ukai and T. Kawai, "Visual fatigue in congenital nystagmus caused by viewing images of color sequential projectors," in Journal of Display Technology, vol. 1, no. 2, pp. 314-320, Dec, 2005.
[19] M. Freeman, M. Champion, and S. Madhavan, "Scanned Laser Pico-Projectors: Seeing the Big Picture (with a Small Device)," Optics & Photonics News 20(5), pp. 28-34, 2009.
[20] S. Willi and A. Grundhöfer, "Spatio-Temporal Point Path Analysis and Optimization of a Galvanoscopic Scanning Laser Projector," in IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 11, pp. 2377-2384, Nov. 2016.
[21] M. M. Galal, H. A. Fayed, A. A. E. Aziz and M. H. Aly, "Smartphones for Payments and Withdrawals Utilizing Embedded LED Flashlight for High Speed Data Transmission," 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, Madrid, 2013, pp. 63-66.
[22] P. Luo et al., "Experimental Demonstration of RGB LED-Based Optical Camera Communications," in IEEE Photonics Journal, vol. 7, no. 5, pp. 1-12, Oct. 2015.
[23] M. Vasilakis, “Dynalight: A Dynamic Visible Light Communication Link for Smartphones.” , Delft University of Technology, 2015.
[24] Trang Nguyen, Nam Tuan Le and Yeong Min Jang, "Practical design of Screen-to-Camera based Optical Camera Communication," 2015 International Conference on Information Networking (ICOIN), Cambodia, 2015, pp. 369-374.
[25] Y. Yang; J. Hao; J. Luo, "CeilingTalk: Lightweight Indoor Broadcast Through LED-Camera Communication," in IEEE Transactions on Mobile Computing, vol.PP, no.99, pp.1-1.
[26] Sony.“HDR-PJ675.”[Online]. Available:
https://store.sony.com.tw/product/show/ff8080815165d0050151ccb6158b5f65.
[27] Samsung. “Galaxy beam 2.” [Online]. Available:
http://www.samsung.com/global/microsite/galaxybeam/
[28] 莊東漢、黃漢邦,“平面顯示器概論”,高立圖書有限公司,2008年八月。
[29] 興宇和電子有限公司。“LCD 面板材料”
[Online]. Available: http://www.xyhlcd.com/knowshow_1055.html.
[30] 數位家庭。“液晶投影機結構與分析” [Online]. Available: http://article.pchome.net/content-1310538-all.html.
[31] “Projector Technology” [Online]. Available:
https://rvlab.icg.tugraz.at/project_page/project_microsense/project_microsense_details.htm.
[32] N. Collings, J. L. Christmas, D. Masiyano and W. A. Crossland, "Real-Time Phase-Only Spatial Light Modulators for 2D Holographic Display," in Journal of Display Technology, vol. 11, no. 3, pp. 278-284, March, 2015.
[33] J. Perez-Vizcaino, O. Mendoza-Yero, R. Martinez-Cuenca, L. Martinez-Leon, E. Tajahuerce and J. Lancis, "Free-Motion Beam Propagation Factor Measurement by Means of a Liquid Crystal Spatial Light Modulator," in Journal of Display Technology, vol. 8, no. 9, pp. 539-545, Sep, 2012.
[34] 蘇勇彰,“配向膜的表現特性對表面穩定鐵電液晶器件(SSFLC)Zigzag缺陷影響之研究”,國立中山大學碩士論文,2007年六月。
[35] S. C. Shin, Y. Jung, T. J. Ahn, S. S. Jeong, S. G. Lee and K. Y. Choi, "The Compact Systems Design Based on DMD and the Straight Line 2-Channel LED for a Mobile Embedded Pico Projector," in Journal of Display Technology, vol. 8, no. 4, pp. 219-224, April, 2012.
[36] R. Tousain and D. van Casteren, "Iterative Learning Control in a Mass Product : Light on Demand in DLP projection systems," 2007 American Control Conference, New York, NY, 2007, pp. 5478-5483.
[37] Feng Tian, Xiang Wu and Jingao Liu, "Research and realization of innovative LED illumination system for DLP projector," 2008 International Conference on Audio, Language and Image Processing, Shanghai, 2008, pp. 194-199.
[38] 蔡福森, “DLP 投影機技術與產品動態光電科技工業協進會”, OPTOLINK, Photonics Industry & Technology Development Association, PIDA, pp-18, 1998.
[39] 台灣區電子電機工會同業公會電子報, “微型投影的技術頗析” [Online]. Available: http://www.teema.org.tw/epaper/20090909/industrial013.html.
[40] J. Y. Son, O. Chernyshov, M.C. Park, W. H. Son, B. R. Lee, J. W. Kim, “A holographic display based on spatial multiplexing” Proc. SPIE 8738, Three-Dimensional Imaging, Visualization, and Display, May 17, 2013.
[41] L. Cui, Y. Tang, H. Jia, J. Luo and B. Gnade, "Analysis of the Multichannel WDM-VLC Communication System", in Journal of Lightwave Technology, vol. 34, no. 24, pp. 5627-5634, Dec.15, 2016.
[42] 戴孟宗,“現代色彩學”,全華圖書股份有限公司,2013年3月。
[43] YCC TEK , “LED光譜圖”, [Online]. Available: http://www.ycctek.com/TechnicalArticle/tabid/2169/EntryId/627/-6-RGB.aspx
[44] Abdul Al-Azzawi, “Photonics: Principles and Pratices”, 2006.
[45] Thorlabs, “Liquid Crystal Tunable Bandpass Filters”, [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3488.
[46] Thorlabs, “UV/VIS Bandpass & Laser Line Filters: 340 - 694.3 nm Center Wavelength”,[Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1001
[47] Panasonic, “LNCQ28PS01WW Red Laser Diode : 100mW 661nm”, [Online].Available:http://docs-asia.electrocomponents.com/webdocs/13ee/0900766b813ee519.pdf
[48] Osram, “Green Laser Diode PL520B Datasheet”, [Online]. Available: http://docs-asia.electrocomponents.com/webdocs/13dd/0900766b813dd131.pdf
[49] Osram, “Blue Laser Diode PL450B Datasheet”, [Online]. Available: http://docs-asia.electrocomponents.com/webdocs/1103/0900766b81103c2a.pdf
[50] S.Haykin. Communications Systems, 4th ed., New York: John Wiley & Sons, Inc, 2001.
[51] F. Xiong, "Digital modulation techniques," Artech House, Boston, London, 2000.
[52] R. A. Shafik, M. S. Rahman, A. R. Islam and N. S. Ashraf, "On the error vector magnitude as a performance metric and comparative analysis," 2006 International Conference on Emerging Technologies, Peshawar, 2006, pp. 27-31.
[53] 蔡承佑,“應用於5G之短距離微投影通訊架構之研究與實現”,國立台灣科技大學碩士論文,2017年一月。
[54] J. Grubor, S. Randel, K. D. Langer and J. W. Walewski, "Broadband Information Broadcasting Using LED-Based Interior Lighting," in Journal of Lightwave Technology, vol. 26, no. 24, pp. 3883-3892, Dec.15, 2008.
[55] A. Leven, F. Vacondio, L. Schmalen, S. Brink and W. Idler, "Estimation of Soft FEC Performance in Optical Transmission Experiments," in IEEE Photonics Technology Letters, vol. 23, no. 20, pp. 1547-1549, Oct.15, 2011.
[56] T. Lu, N. Collings, B. Robertson, and D. Chu, "Design of a low-cost and compact 1 × 5 wavelength-selective switch for access networks," Appl. Opt. 54, pp. 8844-8855, 2015.
[57] S. M. Kim and H. J. Lee, "Visible light communication based on space-division multiple access optical beamforming," Chin. Opt. Lett. 12, pp. 120601-120601, 2014.
[58] Y. P. Huang, C. W. Chen and Y. C. Huang, "Superzone Fresnel Liquid Crystal Lens for Temporal Scanning Auto-Stereoscopic Display," in Journal of Display Technology, vol. 8, no. 11, pp. 650-655, Nov. 2012.
[59] R. Fisher, T. G. Biljana, P. Tode, “Optical System Design 2th”, McGraw-Hill Internationa Enterprises, Inc, 2012.
[60] S. Ahderom, M. Raisi, K. Lo, K. E. Alameh and R. Mavaddat, "Applications of liquid crystal spatial light modulators in optical communications," 5th IEEE International Conference on High Speed Networks and Multimedia Communication (Cat. No.02EX612), pp. 239-242, 2002.
[61] C. Y. Chen, Q. L. Deng, B. S. Lin and W. C. Hung, "Quartz-Blazed Grating Applied on Autostereoscopic Display," in Journal of Display Technology, vol. 8, no. 8, pp. 433-438, Aug. 2012.

QR CODE