簡易檢索 / 詳目顯示

研究生: 梁凱宇
Kai-Yu Liang
論文名稱: 含金剛烷基及第三丁基或含金剛烷基及甲基聚醯亞胺之介電性質研究
Study on the Dielectric Properties of Polyimides Containing Adamantyl and tert-Butyl or Methyl side groups
指導教授: 陳燿騰
Yaw-Tcrng Chern
口試委員: 華沐怡
Mu-Yi Hua
曾文祺
Wen-Chi Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 金剛烷基聚醯亞胺5G高頻絕緣材料損耗因數
外文關鍵詞: adamantane-based, polyimide, 5G high-frequency insulation materials, dissipation factor
相關次數: 點閱:195下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成含有甲基和金剛烷之二胺單體2-(1-Adamantyl)-1,4-bis(4-aminophenoxy)-5-methylbenzene與含有第三丁基和金剛烷之二胺單體2-(1-Admantyl)-1,4-bis(4-aminophenoxy-5-tert-butylbenzene再與三種酸酐:1,4-Phenylenebis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate) (TAHQ)、3,3’,4,4’-Biphenyltetracarboxylic dianhydride (BPDA)、4,4’-Hexafluoroisopropylidenedaphthalic dianhydride (6FDA) 進行聚縮合反應合成聚醯亞胺(PI),聚醯胺酸固有黏度在0.65 ~ 4.21 dL/g之間,均可塗佈成具有韌性之薄膜;這些聚醯亞胺聚合物有好的熱安定性,而在氮氣下所測得開始裂解的溫度在431 ~ 469 ℃之間,而在氮氣下10 %熱重損失溫度在458 ~ 486 ℃之間,在空氣下10 % 熱重損失溫度在458 ~ 482 ℃之間。而由DSC分析所測得Tg溫度在255 ~ 313 ℃之間。在機械性質方面聚醯亞胺薄膜抗張強度介於145~284 MPa之間,斷裂伸長率介於4.1 ~ 9.8%之間,而楊氏模數則介於6.3~13.7 GPa之間。聚醯亞胺聚合物之吸濕率介於0.07 ~ 0.28 %之間,有極低的吸濕率增加了材料在不同環境的穩定性。這些聚醯亞胺聚合物也具有低的介電常數(Dk)和損耗因數(Df),在10 GHz下測量的Df介於0.0055 ~ 0.102之間、在10 GHz下進行測量的介電常數介於在2.62 ~ 2.98之間。


    In this study, polyimides (PIs) were synthesized through polycondensation reactions using two amine monomers, namely 2-(1-Adamantyl)-1,4-bis(4-aminophenoxy)-5-methylbenzene containing a methyl and adamantane group, and 2-(1-Adamantyl)-1,4-bis(4-aminophenocy-5-tert-butylbenzene) containing a tert-butyl and adamantane group, along with three acid anhydrides: 1,4-Phenylenebis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate) (TAHQ), 3,3',4,4'-Biphenyltetracarboxylic dianhydride (BPDA), and 4,4'-Hexafluoroisopropylidenedaphthalic dianhydride (6FDA). The inherent viscosities of the resulting PIs ranged from 0.65 to 4.21 dL/g, and they could be coated to form flexible films. These polyimide films exhibited excellent thermal stability, with onset decomposition temperatures ranging from 431 to 469 °C under a nitrogen atmosphere, and 10% weight loss temperatures ranging from 458 to 486 °C under a nitrogen atmosphere and from 458 to 482°C under an air atmosphere. The glass transition temperatures (Tg) from the DSC analysis of ranged from 255 to 313 °C. In terms of mechanical properties, the tensile strength of the polyimide films ranged from 145 to 284 MPa, the elongation at break ranged from 4.1 to 9.8 %, and the Young's modulus ranged from 6.3 to 13.7 GPa. The moisture absorption of the polyimide films ranged from 0.07 to 0.28%, indicating their low moisture uptake and improved stability in different environments. These polyimide films also exhibited low dielectric constants (Dk) and dissipation factors (Df), with Df ranging from 0.0055 to 0.102 and Dk ranging from 2.62 to 2.98 at 10 GHz.

    目錄 第一章 緒論 1 1.1前言 1 1.2 5G的介紹 2 1.2.1 5G的發展 2 1.2.2 5G的特點 4 1.3軟性電路板 5 1.3.1 軟板的介紹 5 1.3.2 軟板絕緣膜 6 1.4高頻材料的傳輸損耗 7 1.4.1導體損失(Conductor Loss,αc) 7 1.4.2 介電損失(Dielectric loss,αd) 9 1.5應用高頻軟板的絕緣底膜材料種類 10 1.5.1聚醯亞胺 10 1.5.2聚四氟乙烯(Polytetrafluoroethylene,PTFE) 11 1.5.3 液晶聚合物(Liquid Crystal Polymer,LCP) 12 1.6改質型的各種聚醯亞胺 13 1.6.1低(Coefficient of Thermal Expansion,CTE) 熱膨脹係數的聚醯亞胺 13 1.6.2低介電性質的聚醯亞胺 14 1.7低介電常數與損耗因數MPI的文獻回顧 15 1.7.1 含有第三丁基、金剛烷基團的聚醯亞胺 15 1.7.2介電常數(dielectric constant,Dk) 17 1.7.3介電損耗因數(Dissipation Factor,Df) 22 1.8研究動機與內容 26 第二章 實驗 29 2.1實驗藥品 29 2.2實驗程序 31 2.2.1單體合成 32 2.2.2聚醯亞胺薄膜合成 33 第三章 結果與討論 38 3.1 PIs的合成 38 3.2機械性質量測 42 3.3熱性質分析 43 3.4吸濕性測試 48 3.5 介電性質分析 49 第四章 結論 53 第五章 參考文獻 54

    1. Shafique, K., B.A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. Ieee Access, 2020. 8: p. 23022-23040.
    2. Kumar, A., S. Perveen, S. Singh, A. Kumar, S. Majhi, and S.K. Das. 6th Generation: Communication, Signal Processing, Advanced Infrastructure, Emerging Technologies and Challenges. in 2021 6th International Conference on Computing, Communication and Security (ICCCS). 2021. IEEE.
    3. Katz, M., P. Pirinen, and H. Posti. Towards 6G: Getting ready for the next decade. in 2019 16th International symposium on wireless communication systems (ISWCS). 2019. IEEE.
    4. Dogra, A., R.K. Jha, and S. Jain, A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies. IEEE Access, 2020. 9: p. 67512-67547.
    5. Jiang, W., B. Han, M.A. Habibi, and H.D. Schotten, The road towards 6G: A comprehensive survey. IEEE Open Journal of the Communications Society, 2021. 2: p. 334-366.
    6. Viswanathan, H. and P.E. Mogensen, Communications in the 6G era. IEEE Access, 2020. 8: p. 57063-57074.
    7. Agiwal, M., A. Roy, and N. Saxena, Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2016. 18(3): p. 1617-1655.
    8. 第五代行動電話5G NR系統. 2019; Available from: https://www.ansforce.com/post/S1-p1390.
    9. 5G通訊關鍵材料產業發展趨勢2019 ITRI工業技術研究院. 2019.
    10. Notes, O.I.R.A. Copper Foil Surface Roughness for 5G Printed Circuit Boards. . [Copper Foil Surface Roughness for 5G Printed Circuit Boards. ]; Available from: https://www.olympus-ims.com/en/applications/copper-foil-surface-roughness-for-5g-printed-circuit-boards/.
    11. Kashurkin, O., Measurements and simulation of conductor-related loss of PCB transmission lines. 2016.
    12. Coonrod, J., Insertion loss comparisons of common high frequency PCB constructions. IPC APEX EXPO, 2013.
    13. Copper Foil Surface Roughness for 5G Printed Circuit Boards.; Available from: https://www.olympus-ims.com/en/applications/copper-foil-surface-roughness-for-5g-printed-circuit-boards/.
    14. Guan, Z., A. Endo, and T. Hanada. Development of multi-layered build-up insulation dry-film material for ultra-low transmission loss wirings for high-speed semi-conductor packaging. in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). 2018. IEEE.
    15. Hanford, W. and R. Joyce, Polytetrafluoroethylene. Journal of the American Chemical Society, 1946. 68(10): p. 2082-2085.
    16. Zhang, W., H. Jiang, Y. Nie, X. Fang, and G. Chen, Composite films with low dielectric constant and dielectric loss factor at high frequency prepared from polyimide and polytetrafluoroethylene. Polymer Engineering & Science, 2022. 62(12): p. 4226-4234.
    17. How LCP has become the new darling of 5G materials. 2019; Available from: https://www.sohu.com/a/331837564_281264.
    18. Vyas, R., A. Rida, S. Bhattacharya, and M.M. Tentzeris. Liquid Crystal Polymer (LCP): The ultimate solution for low-cost RF flexible electronics and antennas. in 2007 IEEE Antennas and Propagation Society International Symposium. 2007. IEEE.
    19. Yang, Z., P. Ma, F. Li, H. Guo, C. Kang, and L. Gao, Ultrahigh thermal-stability polyimides with low CTE and required flexibility by formation of hydrogen bonds between poly (amic acid) s. European Polymer Journal, 2021. 148: p. 110369.
    20. Hasegawa, M., Semi-aromatic polyimides with low dielectric constant and low CTE. High Performance Polymers, 2001. 13(2): p. S93-S106.
    21. Hasegawa, M., Y. Tsujimura, K. Koseki, and T. Miyazaki, Poly (ester imide) s possessing low CTE and low water absorption (II). Effect of substituents. Polymer journal, 2008. 40(1): p. 56-67.
    22. Chern, Y.-T. and J.-Y. Tsai, Low dielectric constant and high organosolubility of novel polyimide derived from unsymmetric 1, 4-bis (4-aminophenoxy)-2, 6-di-tert-butylbenzene. Macromolecules, 2008. 41(24): p. 9556-9564.
    23. Chern, Y.-T.C.B.-R., Study on Dielectric Properties of Polyimides Containing Symmetric or Asymmetric tert-Btyl Groups, in chemical department. 2022, NTUST.
    24. Chern, Y.T. and H.C. Shiue, Low dielectric constant polyimides derived from 1, 3‐bis (4‐aminophenyl) adamantane. Macromolecular chemistry and physics, 1998. 199(6): p. 963-969.
    25. Misra, A.C., G. Tesoro, G. Hougham, and S.M. Pendharkar, Synthesis and properties of some new fluorine-containing polyimides. Polymer, 1992. 33(5): p. 1078-1082.
    26. Kuo, C.-C., Y.-C. Lin, Y.-C. Chen, P.-H. Wu, S. Ando, M. Ueda, and W.-C. Chen, Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz. ACS Applied Polymer Materials, 2020. 3(1): p. 362-371.
    27. Simpson, J. and A.S. Clair, Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films, 1997. 308: p. 480-485.
    28. Lv, P., Z. Dong, X. Dai, H. Wang, and X. Qiu, Synthesis and properties of ultralow dielectric porous polyimide films containing adamantane. Journal of Polymer Science Part A: Polymer Chemistry, 2018. 56(5): p. 549-559.
    29. Chern, Y.-T. and H.-C. Shiue, Low dielectric constants of soluble polyimides based on adamantane. Macromolecules, 1997. 30(16): p. 4646-4651.
    30. Mathews, A.S., I. Kim, and C.S. Ha, Fully aliphatic polyimides from adamantane‐based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant. Journal of applied polymer science, 2006. 102(4): p. 3316-3326.
    31. Liu, C., X. Pei, X. Huang, C. Wei, and X. Sun, Novel Non‐Coplanar and Tertbutyl‐Substituted Polyimides: Solubility, Optical, Thermal and Dielectric Properties. Chinese Journal of Chemistry, 2015. 33(2): p. 277-284.
    32. Song, N., H. Yao, T. Ma, T. Wang, K. Shi, Y. Tian, B. Zhang, S. Zhu, Y. Zhang, and S. Guan, Decreasing the dielectric constant and water uptake by introducing hydrophobic cross-linked networks into co-polyimide films. Applied Surface Science, 2019. 480: p. 990-997.
    33. Bei, R., C. Qian, Y. Zhang, Z. Chi, S. Liu, X. Chen, J. Xu, and M.P. Aldred, Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties. Journal of Materials Chemistry C, 2017. 5(48): p. 12807-12815.
    34. Araki, H., Y. Kiuchi, A. Shimada, H. Ogasawara, M. Jukei, and M. Tomikawa. Low permittivity and dielectric loss polyimide with patternability for high frequency applications. in 2020 IEEE 70th Electronic Components and Technology Conference (ECTC). 2020. IEEE.
    35. Chen, Y.-C., Y.-C. Lin, E.-C. Chang, C.-C. Kuo, M. Ueda, and W.-C. Chen, Investigation of the structure–dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory. Polymer, 2022. 256: p. 125184.
    36. Shi-jie, H., Synthesis and Characterization of New Polyimides Cotaining Bulky Adamantyl Elements, in chemcial engineering. 1998, NTUST.
    37. Lee, C., Y. Shul, and H. Han, Dielectric properties of oxydianiline‐based polyimide thin films according to the water uptake. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(19): p. 2190-2198.
    38. Luo, J., H. Tong, S. Mo, F. Zhou, S. Zuo, C. Yin, J. Xu, and X. Li, Integrated exploration of experimentation and molecular simulation in ester-containing polyimide dielectrics. RSC advances, 2023. 13(2): p. 963-972.
    39. Cheng, T., G. Lv, Y. Li, H. Yun, L. Zhang, Y. Deng, L. Lin, X. Luo, and J. Nan, Low Dielectric Polyimide/Fluorinated Ethylene Propylene (PI/FEP) Nanocomposite Film for High‐Frequency Flexible Circuit Board Application. Macromolecular Materials and Engineering, 2021. 306(7): p. 2100086.

    QR CODE