簡易檢索 / 詳目顯示

研究生: 王玉珍
Yu-Chen Wang
論文名稱: 發展膠原蛋白纖維微米圖案製作技術應用在間充質幹細胞分化上
Fabrication of collagen fibril micro-patterns for stem cell differentiation control
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 蔡偉博
Wei-Bor Tsai
蔡曉雯
Shiao-Wen Tsai
陳賜原
Szu-yuan Chen
葉旻鑫
Min-Hsin Yeh
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 81
中文關鍵詞: 微米級尺寸圖案膠原蛋白抗沾黏分子細胞生長細胞分化
外文關鍵詞: Micro-pattern, Collagen type I, Antifouling, Cell proliferation, Cell differentiation
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微米級圖案廣泛應用於智能生物材料,透過圖案大小與形狀差異,可改變細胞之間的信號溝通,本論文目的為製備膠原蛋白的微米級島嶼與孔洞,以控制細胞貼附、生長與分化。而膠原蛋白是細胞外基質中的主要成分之一,因此本論文使用膠原蛋白模仿天然組織環境。
本論文第一部分為使用臭氧紫外光結合光罩以製備膠原蛋白島嶼,並利用trypsin (+EDTA) 移除被臭氧紫外光破壞的膠原蛋白,製備膠原蛋白島嶼於雲母片表面。將探討利用不同熱處理的溫度對於膠原蛋白型態的影響、以及熱處理後的膠原蛋白對於細胞生長行為之影響。當熱處理溫度自50度增加到90度,肺癌細胞 (LLC) 延展的比例自42.0 % 增加到 71.2 %。此外,培養間充質幹細胞於膠原蛋白微米級島嶼,肌動蛋白 (F-actin) 可依照島嶼形狀延展。但是因為製備膠原蛋白島嶼的結果不具良好重複性,因此調整膠原蛋白於雲母片上的沉積環境。
論文中第一部分所製備的微米級膠原蛋白島嶼的結果不具良好的重複性,可能因為是膠原蛋白與雲母片的附著力較弱,因此在製作膠原蛋白島嶼時候具有難度。本論文第二部分嘗試利用化學方法修飾基材,以增進膠原蛋白與基材的附著力。將氧氣電漿處理過的雲母片基材分別浸泡於APTES (3-aminopropyltriethoxysilane) GA與GA (glutaraldehyde) 兩種溶液,使用最適化的沉積條件,將膠原蛋白沉積於化學修飾的雲母片,利用水接觸角、原子力顯微鏡、以及甲基橙吸附等實驗進行討論,結果顯示在化學修飾過的雲母片表面,膠原蛋白沉積型態為亂序的絲狀結構且沒有D-banding。
因此,本論文進一步將嘗試利用轉移方式,將雲母片上的具D-banding的膠原蛋白,轉移至經化學修飾後的PDMS,原子力顯微鏡的結果顯示,轉移後的膠原蛋白型態形態為單一方向之絲狀結構,並具有D-banding特性。雲母片上的膠原蛋白島嶼之研究發現,使用化學移除膠原蛋白產生微米級圖案具有難度。因此本論文的第三部分,製備尺寸不同、圖案化的PEGDA在PVDF上,形成PEGDA微米牆圖案於PVDF上,再使用超音波震盪器移除孔洞中未交聯的PEGDA,製備由PEGDA微米牆圍繞的微米級孔洞。實驗發現控制超音波震盪時間是移除PEGDA重要參數,因為超音波震盪時間增加時,可有效移除孔洞中的PEGDA,但是如果超音波震盪過長,則PEGDA微米牆也會同時被移除,因此隨著目標PEGDA孔洞尺寸的不同,超音波震盪最適化時間也不同。一旦成功製備PEGDA微米牆在PVDF上,可將膠原蛋白沉積PVDF於微米級孔洞中,培養兩種不同的間充質幹細胞 (hMSC與WJ MSC),以探討細胞的貼附、生長、與分化的情形。
本論文調整膠原蛋白沉積環境,使具有D-banding的絲狀膠原蛋白在雲母片上沉積成功率增加,利用臭氧紫外光與trypsin (+EDTA) 在雲母片上製備具有D-banding的膠原蛋白微米級島嶼的方法雖然可行,但是trypsin(+EDTA)能夠輕易移除膠原蛋白,使實驗失敗率高。因此藉由表面化學修飾,增加膠原蛋白與雲母片之附著力,而膠原蛋白成功沉積於膠過化學表面修飾的雲母片,但是不具有D-banding,因此發展膠原蛋白轉移之方法,將具有D-banding的絲狀膠原蛋白,轉移至表面經過化學修飾的PDMS,結果顯示轉移過後的膠原蛋白保有D-banding特色。因為研究結果發現,使用trypsin(+EDTA) 移除膠原蛋白而產生微米級圖案具有難度,因此本論文發展紫外光交聯PEGDA之方法,於PVDF表面製備膠原蛋白微米級孔洞,並且誘導間充質幹細胞進行貼附、生長與分化。
未來研究方向可以將具有D-banding的膠原蛋白,藉由表面化學修飾轉移至PDMS甚至是PVDF,再藉由紫外光交聯具有抗沾黏之材料,建立微米牆,圍繞具有D-banding的膠原蛋白,製備膠原蛋白微米級圖案。第二個方向為先將具有D-banding的膠原蛋白轉移至化學表面修飾的PDMS,再使用臭氧紫外光曝光膠原蛋白轉移後的PDMS,因為PDMS可受臭氧紫外光而受熱收縮,而產生凸式的膠原蛋白微米級圖案。


The goal of this thesis is to prepare collagen micro islands/wells by exposing UV light. Because of micro-patterns were widely used to apply in intelligent biomaterial and improve cell behavior such as cell attachment, cell proliferation, and cell differentiation in the micro environment. Additionally, Collagen I is one of abundant molecules in extracellular matrix (ECM). Thus, collagen was used in this thesis to mimic the natural environment.
The first part of thesis, the combination of UV ozone and photo mask was used to destruct collagen on col/mica and the destructed collagen was removed by trypsin (+EDTA). Therefore, collagen micro islands on col/mica were prepared. The effects of heat treatment on collagen fibers and the heat treated collagen fibers on cell behavior were described. With increasing temperature of heat treatment, from 50 oC to 90 oC, the fiber structure and D-banding were preserved and the percentage of elongated cell increased from 42.0 % to 71.2 %. The resulted collagen micro islands on col/mica were presented by fluorescence image and hMSC was cultivated on collagen micro islands. Moreover, the conformation of hMSC accorded to the island shape. However, the collagen micro islands on col/mica was not obtained repeatedly. Therefore, the combination of phosphate and KCl for collagen deposition was optimized and the characteristic of D-banding of collagen on mica was deposited repeatedly.
The second part of this thesis aims to promote the adhesion between collagen and substrate. Two additional substrates were used in this part: functionalized mica and PDMS. The functionalization was facilitated by immersing the substrates in APTES solution, followed by crosslinking using glutaraldehyde. The characterizations of the chemical functionalization were analyzed by WCA, AFM, and methyl orange. The formation of collagen on functionalized mica showed random direction without D-banding. On the other hand, the collagen with D-banding on col/mica was successfully transferred onto the functionalized PDMS. The AFM image showed the fiber structure and D-banding of collagen were preserved on the chemically functionalized PDMS.
The third part of this thesis presented the results of preparation collagen microwells on PVDF. PEGDA, an antifouling polymer, was used to create microwalls surrounding the microwells through UV crosslinking at the wavelength of 365 nm. Ultrasonic was applied to remove the PEGDA inside the microwells, therefore the time of ultrasonication was optimized for the patterns with different aspect ratios. Afterward, collagen was deposited onto the microwells for the modulation of cell proliferation and differentiation.
In conclusion, collagen micro islands on col/mica were fabricated by UV ozone and trypsin (+EDTA) treatment where hMSC proliferated to the island shape. However, the reproducibility was low because of trypsin (+EDTA) removed the collagen on col/mica easily. Thus, the adhesion between collagen and mica was increased by functionalizing mica. Although the deposition of collagen was achieved on functionalized mica but the resultant collagen showed no D-banding. On the other hand, the collagen with D-banding on col/mica can be successfully transferred onto the functionalized PDMS. In addition, collagen microwells were prepared on PVDF by 365 UV exposure to crosslink the PEGDA which formed the microwalls surrounding the PEGDA microwells. The results showed that the microwells decorated with collagen allowed to induce MSC attachment, proliferation, and differentiation.
This thesis discussed the methods to prepare collagen islands/wells for the induction of stem cell. According to the experimental results from this thesis, collagen transfer on functionalized substrates (PDMS, PVDF), followed by UV crosslinking to build the antifouling microwalls can be the future works. Additionally, because of the patterned PDMS could be fabricated by treating masked PDMS with UV ozone of 5 cm. Therefore, the collagen of characteristic D-banding was transferred on functionalized PDMS then treated by UV ozone such that convex collagen patterns could be fabricated.

摘要 1 Abstract 3 List of figure 8 List of table 15 Chapter 1. Introduction 16 1.1 Background 16 1.2 Research goals 16 Chapter 2. Literature Review 18 2.1 Collagen 18 2.1.1 Extracellular matrix (ECM) 18 2.1.2 Effect of collagen on cell behavior 20 2.2 Micro-patterns 22 2.2.1 Fabrication of micro-patterns 22 2.2.2 Effect of micro-patterns on cell behavior 27 2.3 Biological adhesion 29 2.3.1 Zwitterionic polymers 29 2.3.2 Hydrophilic polymers 30 2.4 Polyvinylidene difluoride (PVDF) 30 2.5 Muscovite (mica) 31 2.6 Modification of material surface 31 2.7 Plasma activation on material surface 32 Chapter 3. Experimental 33 3.1 Instruments 33 3.1.1 Collagen micro islands by UV-ozone 34 3.1.2 Collagen microwells exposed under 365 nm UV 34 3.2 Chemicals (E2-503, Taiwan Tech) 35 3.2.1 Chemical s for collagen solution 35 3.2.2 Chemicals for surface functionalization 35 3.2.3 Cross-linkable PEGDA solution 35 3.2.4 Cell culture and proteins 35 3.2.5 Fluorescence staining 36 3.3 Experimental procedures 36 3.3.1 Preparation of collagen solution 36 3.3.2 Collagen deposition on mica 36 3.3.3 Heat treatments of collagen fibers 37 3.3.4 Fabrication of collagen islands on mica 37 3.3.5 Surface functionalization of mica and PDMS 38 3.3.6 Transfer collagen fibers onto functionalized PDMS surface 38 3.3.7 Preparation of collagen microwells on PVDF by UV cross-linkable PEGDA 39 3.3.8 Cell culture 40 3.3.9 Fluorescence staining 40 3.3.10 Methyl orange tests 41 3.4 Characterizations 41 3.4.1 Water contact angle (WCA) measurements 41 3.4.2 Atomic Forced Microscopy (AFM) 42 3.4.3 Scanning Electron Microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) 43 3.4.4 Optical Microscope (OM) 44 3.4.5 Fluorescence microscopy 44 3.4.6 Confocal 44 Chapter 4. Results and Discussion 45 4.1 Collagen islands on mica 45 4.1.1 Effects of heat treatment on collagen fibers 45 4.1.2 hMSC behavior on collagen islands 47 4.1.3 Collagen morphology under different deposition condition 48 4.2 Collagen fibers on functionalized mica 49 4.2.1 Characterization of chemical functionalized mica 49 4.2.2 Collagen deposition on functionalized mica 50 4.2.3 Effects of PBS on removing collagen on col/GA/APTES/O2/mica 50 4.2.4 hMSC cell behavior on different collagen modified substrates 51 4.3 Transfer collagen from col/mica to functionalized PDMS by contact printing 51 4.3.1 Characterization of chemical functionalized PDMS 51 4.3.2 Transfer collagen fibers from col/mica to functionalized PDMS surface 52 4.3.3 WJ-MSC cell behavior on post transfer functionalized PDMS 52 4.4 Collagen microwells on PVDF 53 4.4.1 Effect of exposure time on morphology of microwells 53 4.4.2 Optimization of ultrasonication time for development process 54 4.4.3 Cell attachment of different ultrasonication time on PEGDA microwells 55 4.4.4 Cell behavior on PEGDA microwells with different aspect ratios 56 4.4.5 MSC behavior on different aspect ratio of collagen microwells 56 4.4.6 Adipogenic differentiation 57 Chapter 5. Conclusions 78 Reference 80 Appendix 85

[1] D. G. Stupack, and D. A. Cheresh, “Get a ligand, get a life: integrins, signaling and cell survival,” Journal of cell science vol. 115, no. 19, pp. 3729-3738, 2002.
[2] M. A. Velasco-Velázquez, J. Agramonte-Hevia, D. Barrera, A. Jiménez-Orozco, M. a. J. Garcı́a-Mondragón, N. Mendoza-Patiño, A. Landa, and J. Mandoki, “4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16–F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility,” Cancer letters vol. 198, no. 2, pp. 179-186, 2003.
[3] S. Bhatia, U. Balis, M. Yarmush, and M. Toner, “Microfabrication of hepatocyte/fibroblast co‐cultures: Role of homotypic cell interactions,” Biotechnology progress, vol. 14, no. 3, pp. 378-387, 1998.
[4] J. El-Ali, S. Gaudet, A. Günther, P. K. Sorger, and K. F. Jensen, “Cell stimulus and lysis in a microfluidic device with segmented gas− liquid flow,” Analytical chemistry vol. 77, no. 11, pp. 3629-3636, 2005.
[5] E. A. Roth, T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland, “Inkjet printing for high-throughput cell patterning,” Biomaterials, vol. 25, no. 17, pp. 3707-3715, 2004.
[6] N. Tanaka, H. Ota, K. Fukumori, J. Miyake, M. Yamato, and T. Okano, “Micro-patterned cell-sheets fabricated with stamping-force-controlled micro-contact printing,” Biomaterials, vol. 35, no. 37, pp. 9802-9810, 2014.
[7] W. Lee, D. Choi, Y. Lee, D.-N. Kim, J. Park, and W.-G. Koh, “Preparation of micropatterned hydrogel substrate via surface graft polymerization combined with photolithography for biosensor application,” Sensors Actuators B: Chemical vol. 129, no. 2, pp. 841-849, 2008.
[8] R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, “Patterning proteins and cells using soft lithography,” Biomaterials, vol. 20, no. 23-24, pp. 2363-2376, 1999.
[9] H. J. Lee, S. H. Nam, K. J. Son, and W.-G. Koh, “Micropatterned fibrous scaffolds fabricated using electrospinning and hydrogel lithography: New platforms to create cellular micropatterns,” Sensors Actuators B: Chemical vol. 148, no. 2, pp. 504-510, 2010.
[10] H. J. Lee, D. N. Kim, S. Park, Y. Lee, and W.-G. Koh, “Micropatterning of a nanoporous alumina membrane with poly (ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates,” Acta biomaterialia, vol. 7, no. 3, pp. 1281-1289, 2011.
[11] B. Lanfer, A. Hermann, M. Kirsch, U. Freudenberg, U. Reuner, C. Werner, and A. Storch, “Directed growth of adult human white matter stem cell–derived neurons on aligned fibrillar collagen,” Tissue Engineering Part A, vol. 16, no. 4, pp. 1103-1113, 2010.
[12] Y. Liu, A. J. Goldberg, J. E. Dennis, G. A. Gronowicz, and L. T. Kuhn, “One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating,” PloS one vol. 7, no. 3, 2012.
[13] X. Liu, X. Long, W. Liu, Y. Zhao, T. Hayashi, M. Yamato, K. Mizuno, H. Fujisaki, S. Hattori, and S.-i. Tashiro, “Type I collagen induces mesenchymal cell differentiation into myofibroblasts through YAP-induced TGF-β1 activation,” Biochimie, vol. 150, pp. 110-130, 2018.
[14] E. D. Hay, Cell biology of extracellular matrix: Springer Science & Business Media, 2013.
[15] D. D. J. R. B. Carson, and Endocrinology, “Extracellular matrix: forum introduction,” vol. 2, no. 1, pp. 1-2, 2004.
[16] G. E. Davis, “Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites,” Biochemical biophysical research communications, vol. 182, no. 3, pp. 1025-1031, 1992.
[17] P. Fratzl, "Collagen: structure and mechanics, an introduction," Collagen, pp. 1-13: Springer, 2008.
[18] R. Maynes, Structure and function of collagen types: Elsevier, 2012.
[19] M. Arnold, E. A. Cavalcanti‐Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, and J. P. Spatz, “Activation of integrin function by nanopatterned adhesive interfaces,” ChemPhysChem, vol. 5, no. 3, pp. 383-388, 2004.
[20] S. P. Canelón, and J. M. Wallace, “β-Aminopropionitrile-induced reduction in enzymatic crosslinking causes in vitro changes in collagen morphology and molecular composition,” PloS one, vol. 11, no. 11, pp. e0166392, 2016.
[21] J. Friedrichs, A. Taubenberger, C. M. Franz, and D. J. Muller, “Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM,” Journal of molecular biology, vol. 372, no. 3, pp. 594-607, 2007.
[22] D. K. Schlüter, I. Ramis-Conde, and M. A. Chaplain, “Computational modeling of single-cell migration: the leading role of extracellular matrix fibers,” Biophysical journal, vol. 103, no. 6, pp. 1141-1151, 2012.
[23] R. W. Loo, and M. C. Goh, “Potassium ion mediated collagen microfibril assembly on mica,” Langmuir, vol. 24, no. 23, pp. 13276-13278, 2008.
[24] W. W. Leow, and W. Hwang, “Epitaxially guided assembly of collagen layers on mica surfaces,” Langmuir, vol. 27, no. 17, pp. 10907-10913, 2011.
[25] W. Li, B. Zhu, Z. Strakova, and R. Wang, “Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells,” Biochemicalbiophysical research communications vol. 450, no. 4, pp. 1377-1382, 2014.
[26] K. Poole, K. Khairy, J. Friedrichs, C. Franz, D. A. Cisneros, J. Howard, and D. Mueller, “Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces,” Journal of molecular biology, vol. 349, no. 2, pp. 380-386, 2005.
[27] J. E. Gautrot, B. Trappmann, F. Oceguera-Yanez, J. Connelly, X. He, F. M. Watt, and W. T. Huck, “Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale,” Biomaterials, vol. 31, no. 18, pp. 5030-5041, 2010.
[28] W. Song, H. Lu, N. Kawazoe, and G. Chen, “Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns,” Langmuir, vol. 27, no. 10, pp. 6155-6162, 2011.
[29] J. Tang, R. Peng, and J. Ding, “The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces,” Biomaterials, vol. 31, no. 9, pp. 2470-2476, 2010.
[30] M. Théry, “Micropatterning as a tool to decipher cell morphogenesis and functions,” Journal of cell science, vol. 123, no. 24, pp. 4201-4213, 2010.
[31] J. Costerton, L. Montanaro, and C. R. Arciola, “Biofilm in implant infections: its production and regulation,” The International journal of artificial organs, vol. 28, no. 11, pp. 1062-1068, 2005.
[32] S. Chen, L. Li, C. Zhao, and J. Zheng, “Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials,” Polymer, vol. 51, no. 23, pp. 5283-5293, 2010.
[33] M. He, K. Gao, L. Zhou, Z. Jiao, M. Wu, J. Cao, X. You, Z. Cai, Y. Su, and Z. Jiang, “Zwitterionic materials for antifouling membrane surface construction,” Acta biomaterialia, vol. 40, pp. 142-152, 2016.
[34] B. K. D. Ngo, and M. A. Grunlan, "Protein resistant polymeric biomaterials," ACS Publications, 2017.
[35] Y. J. Chuah, S. Kuddannaya, M. H. A. Lee, Y. Zhang, and Y. Kang, “The effects of poly (dimethylsiloxane) surface silanization on the mesenchymal stem cell fate,” Biomaterials science, vol. 3, no. 2, pp. 383-390, 2015.
[36] C. Borcia, G. Borcia, and N. Dumitrascu, “Surface treatment of polymers by plasma and UV radiation,” Romanian Journal in Physics, vol. 56, no. 1-2, pp. 224-232, 2011.
[37] A. Waterhouse, S. G. Wise, Y. Yin, B. Wu, B. James, H. Zreiqat, D. R. McKenzie, S. Bao, A. S. Weiss, and M. K. Ng, “In vivo biocompatibility of a plasma-activated, coronary stent coating,” Biomaterials, vol. 33, no. 32, pp. 7984-7992, 2012.
[38] H. S. Seo, B. H. Kim, and Y. M. Ko, “Fabrication of anodized titanium with immobilization of hyaluronic acid to improve biological performance,” Progress in Organic Coatings, vol. 69, no. 1, pp. 38-44, 2010.
[39] R. Huang, Q. Liu, J. Huo, and B. J. A. J. o. C. Yang, “Adsorption of methyl orange onto protonated cross-linked chitosan,” vol. 10, no. 1, pp. 24-32, 2017.
[40] T. Chow, “Wetting of rough surfaces,” Journal of Physics: Condensed Matter, vol. 10, no. 27, pp. L445, 1998.
[41] K. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and J. M. Martinis, “Conducting atomic force microscopy for nanoscale tunnel barrier characterization,” Review of scientific instruments, vol. 75, no. 8, pp. 2726-2731, 2004.
[42] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis: Springer, 2017.
[43] M. Schmid, and T. Haaf, “Distamycin A/DAPI bands and the effects of 5-azacytidine on the chromosomes of the chimpanzee, Pan troglodytes,” Cytogenetic and Genome Research, vol. 38, no. 3, pp. 192-199, 1984.
[44] H. H. Heng, and L.-C. Tsui, “Modes of DAPI banding and simultaneous in situ hybridization,” Chromosoma, vol. 102, no. 5, pp. 325-332, 1993.
[45] A. Nwaneshiudu, C. Kuschal, F. H. Sakamoto, R. R. Anderson, K. Schwarzenberger, and R. C. Young, “Introduction to confocal microscopy,” Journal of Investigative Dermatology, vol. 132, no. 12, pp. 1-5, 2012.
[46] A. V. Taubenberger, M. A. Woodruff, H. Bai, D. J. Muller, and D. W. Hutmacher, “The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation,” Biomaterials, vol. 31, no. 10, pp. 2827-2835, 2010.
[47] M. D. Pierschbacher, and E. Ruoslahti, “Variants of the cell recognition site of fibronectin that retain attachment-promoting activity,” Proceedings of the National Academy of Sciences, vol. 81, no. 19, pp. 5985-5988, 1984.
[48] F. Jiang, H. Hörber, J. Howard, and D. J. Müller, “Assembly of collagen into microribbons: effects of pH and electrolytes,” Journal of structural biology, vol. 148, no. 3, pp. 268-278, 2004.
[49] Q. H. Tran, T. H. H. Nguyen, A. T. Mai, T. T. Nguyen, Q. K. Vu, and T. N. Phan, “Development of electrochemical immunosensors based on different serum antibody immobilization methods for detection of Japanese encephalitis virus,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 3, no. 1, pp. 015012, 2012.
[50] L. Cai, H. Tabata, and T. Kawai, “Probing electrical properties of oriented DNA by conducting atomic force microscopy,” Nanotechnology, vol. 12, no. 3, pp. 211, 2001.
[51] G. Tan, L. Zhang, C. Ning, X. Liu, and J. Liao, “Preparation and characterization of APTES films on modification titanium by SAMs,” Thin solid films, vol. 519, no. 15, pp. 4997-5001, 2011.
[52] Y. Hong, C. Gao, Y. Xie, Y. Gong, and J. Shen, “Collagen-coated polylactide microspheres as chondrocyte microcarriers,” Biomaterials, vol. 26, no. 32, pp. 6305-6313, 2005.
[53] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” Journal of microelectromechanical systems, vol. 14, no. 3, pp. 590-597, 2005.
[54] S. Ben Said, F. Arefi‐Khonsari, and J. Pulpytel, “Plasma Polymerization of 3‐Aminopropyltrietoxysilane (APTES) by Open‐Air Atmospheric Arc Plasma Jet for In‐Line Treatments,” Plasma Processes and Polymers, vol. 13, no. 10, pp. 1025-1035, 2016.
[55] X. Qin, Q. Hu, G. Gao, and S. Guan, “Characterization of UV-curable poly (ethylene glycol) diacrylate based hydrogels,” Chemical Research in Chinese Universities, vol. 31, no. 6, pp. 1046-1050, 2015.

無法下載圖示 全文公開日期 2025/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE