簡易檢索 / 詳目顯示

研究生: 曾順星
Shun-Shing Tseng
論文名稱: 使用雙端注入的注入鎖定除頻器與其熱載子效應
ILFD Using Dual Injection MOSFETs and Hot-Carrier Effects
指導教授: 徐敬文
Ching-Wen Hsue
張勝良
Sheng-Lyang Jang
口試委員: 黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 110
中文關鍵詞: 雙端注入的注入鎖定除頻器
外文關鍵詞: ILFD Using Dual Injection
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

首先,本論文提出一個寬鎖定範圍除三注入鎖定除頻器,利用台灣積體電路公司(TSMC)之0.18 微米製程完成。這顆除四注入鎖定除頻器利用交叉耦合與並聯可調共振腔之壓控振盪器,加上由主被動元件混合組成的非線性混波器。當驅動偏壓為0.8伏特且注入訊號強度為0 dBm時,除四注入鎖定除頻器之操作範圍可接受注入訊號從5 GHz到13 GHz,除頻大小8 GHz除頻比例為47.6%。其鎖定範圍可接受注入訊號從10.6 GHz到12.2 GHz,除頻大小1.6 GHz。此除頻器之核心功耗為4.896毫瓦。
其次,我們提出伊寬鎖定範圍除四除二注入鎖定除頻器,同樣是利用台灣積體電路公司(TSMC)之0.18 微米製程完成。這顆注入鎖定除頻器利用交叉耦合與並聯可調共振腔之壓控振盪器,加上由主被動元件混合組成的非線性混波器。當驅動偏壓為0.92伏特且注入訊號強度為0 dBm時,除二注入鎖定除頻器之操作範圍可接受注入訊號從4.9GHz到10.9 GHz,除頻大小6 GHz。除四注入鎖定除頻器之操作範圍可接受注入訊號從10.4GHz到12.2 GHz,除頻大小1.8GHz。此除頻器之核心功耗為7.9毫瓦。
最後,我們探討在一個除四注入鎖定除頻器上的熱載子效應。利用台灣積體電路公司(TSMC)之0.18 微米製程完成。本電路直接經由金屬氧化半導體電晶體注入外部訊號耦合到串聯共振腔內。本段可以見到應力之後與應力之前電路的鎖定範圍之衰減與振盪頻率的變化,還有注入訊號與鎖定訊號的相位雜訊皆上升。


First, A wide operation range parallel resonant divide-by-3 injection-locked frequency divider (ILFD) using a standard 0.18 μm CMOS process is presented. The ÷3 ILFD circuit is realized with a parallel resonant cross-coupled n-core MOS LC-tank oscillator. A tunable MOSFET resistor is used to tune the oscillation frequency and widens the operation range. Two direct-injection MOSFETs in series are used as a frequency doubler and a dynamic linear mixer to widen the locking range. The core power consumption of the ILFD core is 4.896 mW. At the incident power of 0 dBm, and the supply voltage of 0.8V, the maximum locking range is 1.6 GHz, from 10.6 GHz to 12.2 GHz and the operation range percentage of 47.6%, from 5 GHz to 13 GHz

Secondly, we A wide locking and operation range parallel resonant divide-by-2/4 injection-locked frequency divider (ILFD) using a standard 0.18 μm CMOS process is presented. The ÷4/2 ILFD circuit is realized with a parallel resonant cross-coupled n-core MOS LC-tank oscillator. The ILFD uses a tunable resonator to have both wide operation and wide locking range. At the supply voltage of 0.92V, the core power consumption of the ILFD core is 7.9 mW. At the incident power of 0 dBm, the divide-by-2 locking range is 6 GHz, from 4.9 GHz to 10.9 GHz and the divide-by-4 locking range is 1.8 GHz, from 10.4 GHz to 12.2 GHz. The ILFD resonator can operates as a dual-resonance resonator or a single-resonance resonator.

Finally, we investigates hot carrier (HC) effect on the RF characteristics of a wide-locking range divide-by-4 injection-locked frequency divider (ILFD). The ILFD was implemented in the TSMC 0.18 μm CMOS process. High supply voltage stresses were applied at room temperature on the ILFD. The main observed degradation is a decrease in power consumption due to channel mobility degradation. It was also found that the phase noises in both the free-running and locked state increase with stress time. The locking range of ILFD decreases with stress time and the optimized bias of injection transistor for the largest locking range shifts versus stress time.

摘要 I Abstract III 誌謝 V Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Overview of the Voltage Controlled Oscillators 5 2.1 Introduction 5 2.2 Basic Theory of Oscillators 6 2.2.1 Feedback Oscillators 6 2.2.2 Negative Resistance 11 2.3 Parallel RLC Tank 13 2.3.1 Quality Factor in LC Resonator Circuit 13 2.3.2 Inductor Design 16 2.3.3 Transformer Design 23 2.3.4 Varactor Design 28 2.4 Important Parameters of VCO 34 2.4.1 The VCO Frequency [Hz] : 34 2.4.2 Output Power[dBm]: 35 2.4.3 Power Dissipation [mW]: 35 2.4.4 The Phase Noise(PN) of VCO [dBc/Hz] : 36 2.4.5 The VCO Tuning Sensitivity [Hz/V]: 41 2.4.6 Figure-of-Merit (FOM) [dBc/Hz]: ..........................................................................42 2.5 The Popular Resonator...................................................................................................43 2.5.1 Single Transistor Oscillator...............................................................................44 2.5.2 Cross-Coupled Oscillator..........................................................................................47 2.5.3 Complementary Cross-Coupled Topology.................................................................48 Chapter 3 Principles and Design Concepts of Injection Locking Frequency Divider 51 3.1 Principle of Injection Locked Frequency Divider 52 3.2 Locking Range 54 3.3 Direct ILFD 57 Chapter 4 Wide-Band ÷3 LC-Tank Injection-Locked Frequency Divider Using Tunable Passive Inductor..........................................................................................58 4.1 Introduction 58 4.2 Circuit Design 60 4.3 Measurement Results 62 Chapter 5 A Wide-Locking Range Divide-by-2/4 Injection-Locked Frequency Divider......................................................................................................................... 68 5.1 Introduction 68 5.2 Circuit Design 70 5.3 Measurement Results 73 Chapter 6 Experimental Hot-Carrier Stressed RF performance of CMOS Divide-by-4 Injection-Locked Frequency 80 6.1 Introduction 80 6.2 Circuit Design 81 6.3 Measurement Results 83 Chapter 7 Conclusion 87 References 89

[1] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[2] B.Razavi, RF Microelectronics, Prentice Hall PTR 1998.
[3] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[4] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuit fifth edition, Oxford, 2004
[5] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications,” Kluwer Academic Publishers, 2004.
[6] J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, 1998.
[7] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans.
Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
[8] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
[9] Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure for RF IC design,” Proc. ISCAS ‘99, vol. 2, pp. 573.576, 1999.
[10] C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, 2002
[11] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109,, 1974.
[12] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. olid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[13] M. W. Geen, G. J. Green, R.G. Arnold, J. A. Jenkins, and R. H. Jansen, “Miniature multilayer spiral inductors for GaAs MMICs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 303-306, Oct. 1989.
[14] A. Kiranas and Y. Papanaos, “Design issues towards the integration of passive components in silicon RF VCOs,” IEEE International Conference on Electronics, Circuits and Systems, vol. 2, pp. 311-314, Sept. 1998.
[15] P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[16] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[17] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[18] J. Tang and D. Kasperkovitz, Oscillator Design Efficiency: A New Figure Of Merit For Oscillator Benchmarking.
[19] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[20] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
[21] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[22] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[23] Behzad Razavi Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
[20] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
[21] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[22] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[23] Behzad Razavi Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
[24] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection
locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[25] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlocked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472–2481, Feb. 2006.
[26] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, " A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April 2011.
[27] S.-L. Jang, C. C. Liu and C.-W. Chung, ” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, April 2009.
[28] S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., vol. E93-C, no.1, pp. 136-139, Jan. 2010.
[29] S.-L. Jang, H.-S. Chen, C.-C. Liu, and M.-H. Juang” A 0.35 μm CMOS Divide-by-3 LC injection locked frequency divider using linear mixers,” Micro. and Opt. Tech. Lett., vol. 52, no. 12, pp. 2740-2743, Dec., 2010.
[30] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229-231, April 2010.
[31] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390-392, July 2010.
[32] M.-C. Chuang, J.-J. Kuo, C.-H.Wang, and H. Wang, ”A 50 GHz divide-by-4 injection lock frequency divider using matching method’, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.
[33] E. Takeda, C. Y. Yang, and A. Miura-Hamada, Hot-Carrier Effects in MOS Devices. New York: Academic, 1995.
[34] S.-S. Liu, S.-L. Jang, and C.-G. Chyau, " Compact LDD nMOSFET degradation model," IEEE Trans. Electron Devices, Vol. 45, No. 7, pp.1538-1547, 1998.
[35] J.-H. Lee, S.-Y. Kim, I. Cho, S. Hwang, and J.-H. Lee,” 1/f noise characteristics of sub-100 nm MOS transistors,” J. Semicond. Technol. Sci., vol. 6, no. 1, pp. 37–41, Mar. 2006.
[36] S. Naseh, M. J. Deen, and O. Marinov, “Effects of hot-carrier stress on the performance of the LC-tank CMOS oscillator,” IEEE Trans. Electron Devices, pp. 1334-1339, 2003.
[37] T. Quemerais, L. Moqoillon, V. Huard, I. M. Fournier, P. Benech, N. Corrao, and X. Mescot, “Hot-carrier stress effect on a CMOS 65-nm 60-GHz one-stage power amplifier,” IEEE El Dev Lett 31:927 (2010).
[38] S. Naseh, M. J. Deen, and C. H. Chen, “Effects of hot-carrier stress on the performance of CMOS low-noise amplifiers”, IEEE Trans. Device and Materials Reliability, vol. 5, no. 3, pp. 501-508, Sep. 2005.
[39] Y. Leblehici and S-M Kang; “Hot-Carrier Reliability of MOS VLSI Circuits,” Kluwer Academic Publisher, 1993.
[40] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, “Hot-electron-induced MOSFET degradation—Model, monitor, and improvement,” IEEE J. Solid-State Circuits, vol. SSC-20, no. 1, pp. 295–305, Feb. 1985.
[41] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[42] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[43] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170 – 1174, July 2004.
[44] Y. Shen, J. Lee, and H. Shin, “Hot carrier stress effect on the performance of 65 nm CMOS low noise amplifier,” in IEEE ICICDT, Austin, TX, May 2009, pp. 249–252.
[45] S.-L. Jang, J.-S. Yuan, S.-D. Yen, H.-S. Tang, S.-Y. Chen, G.-W. Huang , “Experimental evaluation of hot electron reliability on differential Clapp-VCO”, Microelectronics Reliability, pp. 254–258, Feb. 2013.
[46] C. Salm, E. Hoekstra, J. S. Kolhatkar, A. J. Hof, H. Wallinga, and J, Schmitz , “Low-frequency noise in hot-carrier degraded nMOSFETs”, Microelectronics Reliability, pp. 577–580, 2007.
[47] L. Negre, D. Roy, S. Boret, P. Scheer1, D. Gloria, and G. Ghibaudo, “ Advanced 45nm MOSFET small-signal equivalent circuit aging under DC and RF hot carrier stress,” IEEE, Int. Reliability Physics Symposium (IRPS), 2011, pp.: HV.1.1 - HV.1.4
[48] C. Dai, S.V. Walstra, S.-W. Lee, “The effect of instrinc capacitance degradation on circuit performance,” Symp. VLSI Technology, 1996, 196-197.
[49] C. H. Ling, D. S. Ang, and S. E. Tan, “Effects of measurement frequency and temperature anneal on differential gate capactitance spectra observed in hot carrier stressed MOSFETs,” IEEE Electron Devices, pp. 1528-1535, 1995.
[50] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[51] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOScircuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996
[52] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[53] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[54] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[55] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[56] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[57] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[58] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[59] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[60] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[61] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[62] Y.-A. Liu and C. Y. Cao “Noise mechanism of drain avalanche hot carrier stress in scaled MOSFE”, ISECS, (2010) pp. 256-259.
[63] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, (1996) vol. 31, no. 3, pp. 331-343.

無法下載圖示 全文公開日期 2019/01/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE