簡易檢索 / 詳目顯示

研究生: 吳致均
Jhih-Jyun Wu
論文名稱: 基於空間向量調變功率因數修正之高昇壓三相交直流轉換器
A Three-Phase to Single-Phase AC-DC High Step-Up Converter with PFC Based on Space Vector Modulation
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 陳良瑞
none
謝耀慶
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: Cockcroft-Walton 倍壓電路矩陣式轉換器交流-直流轉換器功率因數修正空間向量調變
外文關鍵詞: Cockcroft-Walton voltage multiplier (CWVM), matrix converter, AC-DC converter, power factor correction (PFC), space vector pulse width modulation (SVPWM)
相關次數: 點閱:256下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一基於空間向量調變功率因數修正之高昇壓三相交直流轉換器,此電路架構包含一Cockcroft-Walton (CW)倍壓電路、一個三相轉單相之矩陣式轉換器,其中矩陣式轉換器係由三個昇壓電感器及六個雙向電力開關所組成。本文提出之轉換器將三相的電源轉換成單相的交流電源至 CW 倍壓電路,並利用空間向量調變之技術使轉換器達到功率因數修正之目的,使輸入線電流具有低電流失真、單位功率因數,以及高的電壓增益,且提供一可調交替頻率之電流注入 CW 倍壓電路來降低輸出電壓漣波,相較於傳統單相 CW 倍壓電路,可獲得較佳的效率。本文將介紹此轉換器之電路操作原理、空間向量原理及控制策略,透過 MATLAB/Simulink 模擬軟體,建立一模擬的架構以驗證本文提出架構及方法之可行性,並以此模擬驗證為基礎,使其架構未來可於實體電路中實現。


This thesis proposes a three-phase to single-phase ac-dc high step-up converter with power factor correction (PFC) based on space vector modulation for high voltage dc applications. The proposed converter includes a Cockcroft-Walton voltage multiplier (CWVM) and a three-phase to single-phase boost-type matrix converter, which is formed by three boost inductors and six bidirectional switches. The proposed converter which changes a single-phase ac source to the CWVM by three-phase ac source application. By using space vector pulse width modulation (SVPWM) to achieve the goal of power factor correction, the proposed converter not only achieves almost sinusoidal input currents with low distortion and unity power factor but also obtains high voltage gain at the output terminal. Moreover, the matrix converter reduces the dc output voltage ripple in CWVM according to adjustable frequency current. The performance of the proposed converter is superior to the conventional a single-phase CWVM, the operation principle, SVPWM principle and control strategy of the proposed converter are detailed in this thesis. Finally,simulated results demonstrate the claims and validity of the proposed converter, and experimental work will be achieved in the future.

摘 要 I Abstract II 致 謝 III 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景及動機 1 1.2 系統描述與研究方法 3 1.3 內容大綱 4 第二章 功率因數修正介紹 6 2.1 前言 6 2.2 功率因數之定義 6 2.3 功率因數修正電路 11 2.4 功率因數修正電路控制方法 12 2.4.1 連續導通模式 12 2.4.2 不連續導通模式 17 2.4.3 邊界導通模式 18 2.5 三相功率因數修正電路 20 第三章 空間向量調變功率因數修正之高昇壓三相交直流轉換器 24 3.1 前言 24 3.2 傳統Cockcroft-Walton倍壓電路介紹 24 3.3 空間向量調變原理 26 3.4 電路操作原理 27 3.5 控制策略 51 第四章 系統模擬結果 53 4.1 前言 53 4.2 系統模擬架構 54 4.3 模擬結果 55 第五章 結論與未來研究方向 67 5.1 結論 67 5.2 未來研究方向 67 參考文獻 69

[1] M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, “Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 526–534, Jul. 1992.

[2] C. Iannello, S. Luo, and I. Batarseh, “Full bridge ZCS PWM converter for high-voltage high-power applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2, pp. 515-526, Apr. 2002.

[3] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A DC-DC multilevel boost converter,” IET Power Electron., vol. 3, no. 1, pp. 129-137, Jan. 2010.

[4] H. J. Chung, “A CW CO2 laser using a high-voltage dc-dc converter with resonant inverter and Cockcroft-Walton multiplier,” Opt. Laser Technol., vol. 38, no. 8, pp. 577–584, Nov. 2006.

[5] Y. Xue, L. Chang, S. B. Kjær, J. Bordonau, and T. Shimzu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305–1314, Sep. 2004.

[6] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless dc-dc converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.

[7] W. Li and X. He, “Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011.

[8] D. Zhou, A. Pietkiewicz, and S. Cuk, “A three-switch high-voltage converter,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 177–183, Jan. 1999.

[9] F. Hwang, Y. Shen, and S. H. Jayaram, “Low-ripple compact high-voltage DC power supply,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1139–1145, Sep./Oct. 2006.

[10] I. C. Kobougias, and E. C. Tatakis, “Optimal design of a half-wave Cockcroft–Walton voltage multiplier with minimum total capacitance,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2460–2468, Sep. 2010.

[11] S. M. Sbenaty, and C. A. Ventrice, “High voltage DC shifted RF switch-mode power supply system design for gas lasers excitation,” in Proc. Appl. Power Electron. Conf. Expo., pp. 173–177, Mar. 1991.

[12] P.G. Maranesi, F. Raina, M. Riva, and G. Volpi, “Accurate and nimble forecast of the HV source dynamics,” in Proc. IEEE Power Electron. Spec. Conf., pp. 539–543, Jun. 2000.

[13] F. Belloni, P. Maranesi , and M. Riva, “Parameters optimization for improved dynamics of voltage multipliers for space,” in Proc. IEEE Power Electron. Spec. Conf., pp. 493–443, Jun. 2004.

[14] E. Chu, L. Gamage, M. Ishitobi, E. Hiraki, and M. Nakaoka, “Improved transient and steady-state performance of series resonant ZCS high-frequency inverter-coupled voltage multiplier converter with dual mode PFM control scheme,” J. Electr. Eng. Jpn., vol. 149, no. 4, pp. 60–72, Dec. 2004.

[15] Z. Cao, M. Hu, N. Frohleke, and J. Bocker, “Modeling and control design for a very low-frequency high-voltage test system,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1068–1077, Apr. 2010.

[16] M. M. Weiner, “Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages,” Rev. Sci. Instrum., vol. 40, no. 2, pp. 300–333, Feb. 1969.

[17] E. Kuffel and W. S. Zaengl, High Voltage Engineering Fundamentals. New York: Pergamon International Library, 1984, ch. 2.

[18] M. Khalifa, “High-voltage engineering, theory and practice,” in Electrical Engineering and Electronics, A series of Reference Books and Textbooks, vol. 63. New York: Marcel Decker, Mar. 1990, ch. 6.

[19] S. D. Johnson, A. F. Witulski, and R. W. Erickson, “Comparison of resonant topologies in high-voltage DC applications,” IEEE Transactions on Aerosp. Electronics System, vol. 24, no. 3, pp. 263–274, May 1988.
[20] C. L. Chen, C. M. Lee, R. J. Tu, and G. K. Horng, “A novel simplified space-vector-modulated control scheme for three-phase switch-mode rectifier,” IEEE Transactions on Industrial Electronics, vol. 46, no. 3, pp. 512–516, Jun. 1999.

[21] K. Hasan, K. Osman, “A novel current-control method for three-phase PWM AC-DC voltage-source converters” IEEE Transactions onIndustrial Electronics, vol. 46, no. 3, pp. 544-553, Jun. 1999.

[22] C. T. Pan, J. J. Shieh, “A single-stage three-phase boost-buck AC-DC converter based on generalized zero-space vectors” IEEE Transactions on Power Electronics, vol. 14, no. 5, pp. 949-958, Sep.1999.

[23] C. M. Young, M. H. Chen, H. L. Chen, “A single-stage three-phase to single-phase current-fed high step-up ac-dc matrix converter with PFC,” in Proc. IEEE ICSET, pp. 281–286, Sept. 2012.

[24] 宋自恆,林慶仁,“功率因數修正之原理與常用元件規格”,新電子科技雜誌第217期•2004年4月號.

[25] 梁適安譯,“高頻交換式電源供應器原理與設計”,二版,全華科技圖書,1995.

[26] 梁適安,“交換式電源供應器理論與實務設計”,全華科技圖書,2004.

[27] 葉孝益,“切換式電源供應系統功因控制分析與研究”,碩士學位論文,國立清華大學,2003.

[28] R. Carbone and P. Corsonello, “A new passive power factor corrector for single-phase bridge diode rectifier,” in proc. IEEE PESC’03, pp. 701-706, Jun. 2003.

[29] J. Zhang, M. M. Jovanovic, and F. C. Lee, “Comparison between CCMsingle-stage and two-stage boost PFC converters,” in Proc. IEEE Applied Power Electron. Conf., pp. 335-341, Mar. 1999.

[30] L. Rossetto, G. Spiazzi, and P. Tenti, “Controltechniques for power factor correction converters,”in Proc. PEMC’94, pp. 1310-1318, Sep. 1994.
[31] Z. Yang and P. C. Sen, “A novel technique to achieve unity power factorand fast transient response in AC-to-DC converters,” IEEE Trans. PowerElectron., vol. 16, no. 6, pp. 764-775, Nov. 2001.

[32] T. Grote, F. Schafmeister, H. Figge, N. Frohleke, P. Ide, and J. Bocker,“Adaptive digital slope compensation for peak current mode control,” in Proc. IEEE Energ. Convers. Congr. Expo., pp. 3523-3529, Sep. 2009.

[33] C. Gatlan and L. Gatlan, “AC to DC PWM voltage source converter under hysteresis current control,” ISIE ’97 Proceedings of the IEEE International Symposium on,vol. 2,pp.469-473, 1997.

[34] A. Karaarslan, “Hysterisis control of power factor correction with a new approach of sampling technique,” in Proc. IEEE Convention of Electrical and Electronics Engineers in Israel, pp. 765-769, Dec. 2008.

[35] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factorcorrection circuits employing discontinuous-mode boost converters,”in Proc. IEEE Power Electronics Specialists Conf.(PESC).,pp. 825-829, Jun. 1989.

[36] S. P. Yang, S. J. Chen, and C. M. Huang, “Small-signal modeling and controller design of BCM boost PFC converters,”in Proc. IEEE Industrial Electronics and Applications,pp. 1096-1101, Jul. 2012.

[37] Draft-Revision of Publication IEC 555-2: Harmonics, Equipment for Connection to the Public Low Voltage Supply System, IEC SC 77A, 1990.

[38] E. Ismail, and R. W. Erickson, “A single transistor three phase resonant switch for high quality rectification,” in Proc. IEEE PESC, vol. 2, pp. 1341-1351, Jul. 1992.

[39] L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Transactions on Industrial Applications, vol. 31, no. 6, pp. 1234-1245, Nov./Dec. 1995.

[40] J. W. Jung, “Project #2 space vectors PWM inverter,” Department of Electrical and Computer Engineering, Ohio State University, 2005.

[41] Y. Y. Tzou and H. J. Hsu, “FPGA realization of space-vector PWM control IC of three-phase PWM inverter,” IEEE Transactions on Power Electronics, vol. 12, no. 6, pp. 953-963, Nov. 1997.

[42] V. Deshpande, J. G. Chaudhari and P. P. Jagtap, “Development and Simulation of SPWM and SVPWM Control Induction Motor Drive,”2009 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET), pp. 748-752, Dec. 2009.

[43] C. M. Young, M. H. Chen, S. H. Yeh, and K. H. Yuo, “A single-phase single-stage high step-up ac-dc matrix converter based on Cockcroft-Walton voltage multiplier with PFC,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4894–4905, Dec. 2012.

QR CODE