簡易檢索 / 詳目顯示

研究生: 游鈞皓
Chun-Hao Yu
論文名稱: 五軸工具機之線上傘齒輪三維掃描式探頭量測
On-machine 3d scanning measurement of bevel gears based on the five-axis cnc machine
指導教授: 石伊蓓
Yi-pei Shih
口試委員: 李維楨
Wei-chen Lee
郭進星
Chin-hsing Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 113
中文關鍵詞: 螺旋傘齒輪線上量測五軸工具機西門子840D三維掃描式探頭
外文關鍵詞: Spiral bevel gears, on-line measurement system, five-axis machine, 3D scanning sensor
相關次數: 點閱:345下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現有的傘齒輪量測專用機,如克林根貝格公司的P系列和格里森公司的GMS系列,皆是四軸的齒輪量測機,它們皆是搭配三維掃描式探頭系統(3D scanning probe system),由於掃描式探頭能快速的檢測出齒面輪廓誤差,現今有許多齒輪研磨機和切齒機搭載線上量測設備來檢測齒形誤差,以提高齒輪製造上精度,已是時勢所趨。
掃描式探頭其工作原理為言者理論齒形位置移動探頭,探頭則連著位置感測器,而齒形誤差所造成的探頭偏離原點可即時的讀值與紀錄,位置感測器分一維和三維兩種,兩種感測器價格差異極大,其差異之處是三維感測器能檢測xyz三方向的誤差,所以只需探頭中心沿著理論位置做偏置,以僅需四軸機器即能驅動探頭到達齒面量測位置,一維探頭因其僅有一維度的量測方向,故探頭不只是沿著齒面移動,亦須控制齒面接觸點的法向量指向感測器的量測方向,而這是五軸機器方能達成。
本研究是於五軸工具機上開發一線上三維掃描式量測系統,整合西門子840Dsl控制器及三維掃描式探頭,建立傘齒輪量測數學模式,開發傘齒輪線上量測和精度評估軟體,並實際上機量測一螺旋傘齒輪,量測結果會與克林根貝格P40量測機做數據比較,以驗證本研究之數學模式之正確性。


The commercialized measuring device for bevel gears, such as Klinglnberg P series and Gleason GMS series gear measurement machine, are all in four-axis structure. They adopt 3D scanning probe system. Due to the efficient and high-speed characteristics of the scanning probe, a large number of high-precision gear grinding and cutting machines apply them to detect tooth surface contour error and to improve the accuracy of gear manufacturing.
Scanning probe works by moving the probe along the theoretical contour positions. Meanwhile, the probe is connected to the position sensor, and the contour deviations can be rapidly read out and recorded. Two kinds of the position sensors are utilized: one-dimensional and three-dimensional sensors. There are a large price gaps between the two systems. 3D probe system can detect the errors from the xyz directions, so just moving the probe center along the offset surface of tooth can detect the positions of the tooth surface on a four-axis machine. One-dimensional probe system can only detect a single direction of error, so the probe center is required to move on the tooth offset surface along the normal directions and a five-axis machine is needed to achieve this approach using.
The study aims to develop an on-line measurement system for bevel gears on a five-axis machine using three-dimensional scanning probe. The scanning sensor system is integrated into a five-axis machine equipped with Siemens 840Dsl controller. We will establish the mathematical models for measurement of bevel gears, and the on-line measurement and gear evaluation program will be developed. Here, the five-axis machine (Quaser Machine Tools Inc., UX300 series) is used as the experiment machine. A spiral bevel gear is measured and evaluated, and then the results are compared to the accuracy report of the same spiral bevel gear measured by Klingelnberg P40 gear measurement machine to verify the proposed mathematical models.

指導教授推薦書 I 學位考試委員會審定書 III 中文摘要 IV Abstract V 誌 謝 VI 目 錄 VII 符號定義 X 圖索引 XI 表索引 XIII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 文獻回顧 3 1.5 論文架構 4 第 2 章 傘齒輪齒面拓樸點數學模式 5 2.1 前言 5 2.2傘齒輪檢測項目與精度評估 5 2.3傘齒面拓樸點位置和單位法向量 11 2.4數值範例 12 2.5 小結 13 第 3 章 五軸工具機掃描式探頭量測位置數學模式 14 3.1 前言 14 3.2五軸工具機 14 3.3五軸工具機線上量測坐標系統 15 3.4機台工作原點與工件軸偏擺校正 16 3.4.1G54工作原點與校正 16 3.4.2工件軸偏擺校正 18 3.4.3掃描式探頭XYZ三方向校正 19 3.4.4國際標準ISO-1036.4找掃描探測誤差 20 3.5傘齒輪齒面拓樸點位置量測之數學模式 23 3.5.1 一維感測器量測路徑推導 23 3.5.2三維感測器量測路徑推導 24 3.6傘齒輪量測路徑規劃 27 3.6.1一維量測路徑規劃 27 3.6.2三維量測路徑規劃 31 3.7數值範例 33 3.8 小結 33 第 4 章 線上量測系統架構 34 4.1 前言 34 4.2五軸工具機線上掃描式探頭量測系統 34 4.3西門子840D 控制器 35 4.3.1西門子840Dsl連線設定 36 4.3.2 使用Visual C#抓取數據 39 4.4Blum TC76掃描式感測器 42 4.4.1訊號擷取-硬體端 44 4.4.2利用Visual C#擷取訊號值 45 4.5人機介面 47 4.5.1量測資料與NC規劃系統 47 4.5.2 CNC機台監控系統 48 4.5.3線上量測系統 48 4.5.3量測模擬程式 49 4.6 小結 50 第 5 章 一維掃描探頭傘齒輪量測實驗 51 5.1 前言 51 5.2掃描探頭重複精度測試 51 5.3節距誤差量測結果 52 5.4齒面拓樸誤差量測結果 53 5.5徑向跳動誤差量測結果 57 5.6 小結 57 第 6 章 三維掃描探頭傘齒輪量測實驗 58 6.1 前言 58 6.2節距誤差量測結果 58 6.3齒面拓樸誤差量測結果 60 6.4徑向跳動誤差量測結果 64 6.5小結 64 第 7 章 結論與建議 65 7.1結果與討論 65 7.2 建議與未來展望 67 參考文獻 68 附錄 A. 小齒輪齒面拓樸點位置與法向量 71 附錄 B. 大齒輪齒面拓樸點位置與法向量 75 附錄 C. 一維探頭齒面拓樸點量測座標點 79 附錄 D. 三維探頭齒面拓樸點量測座標點 83 附錄 E. MESINFO.CDS 87 附錄 F. SOLL1.CDS-小齒輪 89 附錄 G. SOLL1.CDS-大齒輪 91 附錄 H. ACTU1.CDS-小齒輪 93 附錄 I. ACTU1.CDS-大齒輪 95 附錄 J. P40輸出量測結果-小齒輪 97 附錄 K. P40輸出量測結果-大齒輪 104 附錄 L. 感測器量測資料 111 授權書 113

[1] Fong, Z. H., 2000, “Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motion,” ASME J. Mech. Des., 122, pp. 136-142.
[2] Shih, Y. P., Fong, Z. H., and Lin, G. C. Y., 2007, “Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator,” ASME J. Mech. Des., 129 (1), pp. 38–47.
[3] ANSI/AGMA 2009-B01, 2009, Bevel Gear Classification, Tolerances, and Measuring Methods, Alexandria, Virginia, USA.
[4] Shunmugam, M. S., Rao, B. S., and Jayaprakash, V., 1998, “Establishing Gear Tooth Surface Geometry and Normal Deviation, Part II-Bevel Gears,” Mech. Mach. Theory, 33 (5), pp. 525-534.
[5] Litvin, F. L., and Fuentes, A., 2004, Gear Geometry and Applied Theory, 2nd edition, Cambridge University Press, New York.
[6] Shih, Y. P., and Fong, Z. H., 2008, “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Gear Generator,” ASME J. Mech. Des., 130 (6) , 062604(11 pages).
[7] A. Guenther, Interpretatiom of Bevel Gear Topography Measurements, CIRP Annals-Manufacturing Technology Vol. 60 No. 1 (2004)551-554.
[8] 王邦宇,2011,五軸CNC成形砂輪磨齒機之人機介面研究,國立台灣科技大學碩士論文。
[9] 林士勛,2013,五軸工具機之傘齒輪線上掃描式量測,國立台灣科技大學碩士論文。
[10] 張欽宇,2011,五軸CNC成形砂輪磨齒機NC路徑模擬與碰撞檢測,國立台灣科技大學碩士論文。
[11] 林彥宏,2004,五軸虛擬工具機模擬系統一般化建構研究,國立成功大學碩士論文。
[12] 蔡佳宏,2011,五軸CNC成形砂輪機線上掃描式量測NC路徑規劃與齒輪精度評估之研究,國立台灣科技大學碩士論文。
[13] Wan, P., Guo, J., Wu, P., and Fei, Z., “Tooth surface modeling and measurement evaluation for spiral bevel gear based on gear measuring center,” Proceedings of SPIE, Vol. 7997, No. 799733 (2011).
[14] ISO 10360-4, 2000, Geometrical Product Specifications (GPS) -- Acceptance and reverification tests for coordinate measuring machines (CMM) -- Part 4: CMMs used in scanning measuring mode.
[15] H, Schwenke., W. Knapp., H, Haitjema., A, Weckenmann., R, Schmitt., F. Delbressine., “Geometric error measurement and compensation of machines-An update,” CIRP Annals-Manufacturing Technology, Vol. 57, No. 2, pp. 660-675 (2008).
[16] DIN 3965, 1986 Tolerances For Kegelradverzahnungen, Berlin, Germany.
[17] Klingelnberg, 2006, P40 Operating Instructions, Bevel Gear Software, Version 03-000en.
[18] Steven, C. C., and Raymond, P. C., Numerical Methods for Engineers, 6th Edition, McGraw-Hill, NY, USA (2010).
[19] SINUMERIK, 840D/840Di/810D RPC SINUMERIK Computer Link Function Manual, 10.05 Edition.
[20] SINUMERIK, 2010, 840D/840Di/810D編程手冊,Version 2.6 SP1, Germany.
[21] 大新資訊,OpenGL超級手冊第二版,碁峰資訊,台北市,2000.
[22] Blum, 2012, AD76 Installation Instructions, Germany.
[23] Blum, 2011, TC76 Operating Instructions, Germany.
[24] National Instruments, 2009, NI USB-621x Specifications, USA.

QR CODE