簡易檢索 / 詳目顯示

研究生: 羅立偉
Li-wei Ro
論文名稱: 以密度泛函理論 NHx (x=0-3)和CHx (x=0-4)在二氧化銥(100)表面上脫氫反應的研究
DFT Study of Ammonia and Methane Dehydrogenation on IrO2(100) surface
指導教授: 江志強
Jyh-chiang Jiang
口試委員: 何嘉仁
Jia-Jen Ho
洪偉修
Wei-hsiu Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 85
中文關鍵詞: 密度泛函理論甲烷脫氫氨氣脫氣
外文關鍵詞: DFT, methane dehydrogenation, ammonia dehydrogenation
相關次數: 點閱:445下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用密度泛函理論(DFT)方法研究在二氧化銥(100)表面上氨氣和甲烷的脫氫反應,前者純粹探討脫氫反應,後者除了脫氫反應之外,還另考慮Ocus原子與CHx的結合反應。其中,反應物、中間產物和產物的最佳化吸附結構、能量、以及振動頻率皆計算於研究中。而脫氫反應中,我們考慮氫原子的擴散、O-H鍵的斷鍵、水和氫分子的生成。由氨氣脫氫的計算結果顯示其反應僅能發生在富氧的環境;當存在Ocus原子時,二氧化銥(100)表面上才能有足夠的氧原子以完成NHx脫氫反應。另外,我們比較二氧化銥(110)表面上氨氣脫氫反應,發現二氧化銥(110)有較佳的脫氫能力。在甲烷脫氫反應的部分,甲烷和氨氣具有相同的脫氫機制,而甲烷脫氫反應的速率決定步驟在第三步脫氫(CH2 →CH),伴隨的反應能障為0.85 eV,此能障表示中間產物CH2無法持續脫氫,CH2O和CH2OH的生成視為重要的脫氫反應路徑,若持續分解CH2O碳上的氫就會形成CO。另一方面,再進一步的考慮中間產物CH2OH的加氫反應,在經過反應能障0.93 eV會形成甲醇。


Density function theory calculations have been performed to investigate ammonia, and methane dehydrogenation, the coupling reactions between CHx(x = 1-2) and Ocus atom on IrO2(100) surface. The structures, energetics and vibration frequencies of the reactants, intermediates, transition states and products were determined on the stoichiometry and o-rich IrO2(100) surfaces. In addition, the H diffusion, O-H scission, H2 and H2O formation were examined. The ammonia dehydrogenation calculated results show that the dehydrogenation on IrO2(100) surface, the oxygen-rich environment is required for dehydrogenation process, because the additional Ocus atoms make the surface having sufficient oxygen species to complete the dehydrogenation. Though the catalytic performance on IrO2(100) surface is poorer than that on IrO2(110) surface, but IrO2(100) surface still exists excellent dehydrogenation ability compared to noble transition metals. The calculation in the methane dehydrogenation, which has similar ammonia dehydrogenation mechanism, shows the RDS barrier of CH2 → CH + H on o-IrO2(100) is 0.85 eV. The methane dehydrogenation intermediates CHx (x =1 or 2) can react with Ocus/OHcus to form CH2O and CH2OH, and CHO. Furthermore, it may form methanol (CH3OH) through the reaction between CH2OH and H atom, with a barrier 0.93 eV on o-IrO2(100) surface.

Abstract......................................................III Contents.......................................................IV List of Tables.................................................IV List of Figures.................................................V CHAPTER 1. Introduction.........................................1 1.1 IrO2........................................................1 1.2 Ammonia dehydrogenation ....................................6 1.3 Methane dehydrogenation ....................................9 1.4 About this work............................................11 CHAPTER 2. Computational Detail................................13 2.1 Theoretical Background.....................................13 2.2 Methods and Parameters in This Work........................20 2.3 Surface Models .............................................21 CHAPTER 3. Ammonia Dehydrogenation.............................26 3.1 NHx adsorption on IrO2(100) surface........................26 3.2 NHx dehydrogenation on IrO2(100) surface...................30 3.2.2 NHx dehydrogenation on stoichimetry IrO2(100) surface....31 3.2.3 NHx dehydrogenation on o-rich IrO2(100) surface..........37 CHAPTER 4. Methane Dehydrogenation.............................46 4.1 CHx adsorption on IrO2(100) surface........................46 4.2 CHx adsorption on IrO2(100) surface........................53 4.2.1 CHx dehydrogenation on stoichimetry IrO2(100) surface....55 4.2.2 CHx dehydrogenation on o-rich IrO2(100) surface..........58 4.2.3 CHx combination with Ocusatom on the o-IrO2(100) Surface.65 CHAPTER 5. Conclusion..........................................77 Reference......................................................80

(1) W. D. Ryden; A. W. Lawson; C. C. Sartain Phys. Rev. B 1970, 1, 1494.
(2) T. Kitazawa. Ioroi; Yasuda. K. N; Y. Yamamoto; H. Takenaka J. Electro. Society 2000, 147, 2018.
(3) J. Boettger Phys. Rev. B 1994, 49, 16798.
(4) E. Lundgren; A. Mikkelsen; J. N. Andersen; G. Kresse; M. Schmid; P. Varga J. Phys. Condens. Matter 2006, 18, R481.
(5) E. Lundgren; H. Over; J. Phys. Condens. Matter 2008, 20, 180302.
(6) A. Stierle; A. M. Molenbroek MRS Bull. 2007, 32, 1001.
(7) H. Over; Y. D. Kim; A. P. Seitsonen; S. Wendt; E. Lundgren; M. Schmid; P. Varga; A. Morgante; G. Ertl; Science 2000, 287, 1474.
(8) Y. B. He; M. Knapp; E. Lundgren; H. Over; J. Phys. Chem. B 2005, 109, 21825.
(9) J. Gustafson; A. Mikkelsen; M. Borg; E. Lundgren; L. Ko¨hler; G. Kresse; M. Schmid; P. Varga; J. Yuhara; X. Torrelles; C. Andersen Quiro´s, J. N.; Phys. Rev. Lett. 2004, 92, 126102.
(10) E. Lundgren; G. Kresse; C. Klein; M. Borg; J. N. Andersen; M. De Santis; Y. Gauthier; C. Konvicka; M. Schmid; P. Varga Phys. Rev. Lett. 2002, 88, 246103.
(11) B. L. M. Hendriksen; J. W. M. Frenken Phys. Rev. Lett. 2002, 89, 046101.
(12) Chia-Ching Wang; Shih Syong Siao; Jyh-Chiang Jiang; J. Phys. Chem. C 2010, 114, 18588.
(13) E. H. Calderon, J. Hahladakis; Surf. Sci. Lett. 2007, 601, L69.
(14) S. Fierro; A. Kapałka, Olivier Frey; Milena Koudelka; Christos Comninellis; Electrochemistry Communications 2010, 4, 587-591.
(15) Erika Herrera Calderon; John Hahladakis; György Foti; Alexandros Katsaounis; Electrochimica Acta 2010, 22, 8215-8219.
(16) D.I. Hagen; B.E. Nieuwenhuys; G. Rovida’; G.A. Somorjai; Surf. Sci. 1976, 57, 632-650.
(17) Ts. S. Marinova; K. L. Kostov; Surf. Sci.1987, 185, 203-212.
(18) H. Conrad; J. Kippers; F. Nitschk; A.Plagge; Surf. Sci.1977, 69, 669-676.
(19) Y. B. He; A. Stierle; W. X. Li; A. Farkas; N. Kasper; H. Over; J Phys. Chem. C 2008, 112, 11946-11953.
(20) Wen-Hung Chung; Dah-Shyang Tsai; the IrO2 report in 2011
(21) A.A. Bolzan; C. Fong; B. J. Kennedy; C. J. Howard; Acta Crystallographica Section B, 1997. 53. 373-380
(22) C. French Kuhlmann patent, 11331, 1838.
(23) W. Ostwald GB 087909 19080409, 1908.
(24) S. L. Handforth; J. N. Tilley; Ind. Eng. Chem. 1934, 26, 1287.
(25) R. Farrauto; C. Bartholomew; Fundamentals of Industrial Catalytic Processes; Chapman & Hall: London, 1997; p 480.
(26) L. Z. Andrussow; Angew. Chem. 1926, 39, 321.
(27) F. Z. Raschig; Angew. Chem. 1927, 40, 1183.
(28) M. Z. Bodenstein; Electrochem. Angew. Phys. Chem. 1935, 41, 466.
(29) Y. Wang; K. Jacobi; W.-D. Schone; G. Ertl J Phys. Chem. B 2005, 109, 7883.
(30) D. G. Löffler; L. D. Schmidt J. Catal. 1976, 41, 440.
(31) G. Ertl ; M. Huber J. Catal. 1980, 61, 537
(32) J. C. Ganely ; F. S. Thomas ;E. G. Seebauer ; R. I. Masel Catal. Lett. 2004, 96, 117
(33) T. V. Choudhary; C. Sivadinarayana; D. W. Goodman Catal. Lett. 2001, 72, 197
(34) H. Mortensen; L. Diekhöner; A. Baurichter; E. Jensen; A. C. Luntz J. Chem. Phys. 2000, 113, 6882
(35) T. V. Choudhary; A. K. Santra; C. Sivadinarayana; B. K. Min; C.-W. Yi; K. Davis; D. W. Goodman, Catal. Lett. 2001, 77, 1
(36) K. Jacobi; Y. Wang; C. Y. Fan; H. Dietrich J. Chem. Phys. 2001, 115, 4306
(37) A. K. Santra; B. K. Min; C. W. Yi; K. Luo; T. V. Choudhary; D. W. Goodman J. Phys. Chem. B 2002, 106, 340
(38) L. Diekhöner; H. Mortensen; A. Baurichter; A. C. Luntz; B. Hummer Phys. Rev. Lett. 2000, 84, 4906
(39) A. Logadóttir; J. K. Nørskov J. Catal. 2003, 220, 273
(40) C. J. Zhang; M. Lynch; P. Hu Surf. Sci. 2002, 496, 221
(41) Sergey Stolbov; Talat S. Rahman J. Chem. Phys. 2005, 123, 204716
(42) F. Frechard; R. A. van Santen; A. Siokou; J. W. Niemantsverdriet; J. Hafner J. Chem. Phys. 1999, 111, 8124
(43) Z.-P. Liu; P. Hu; M.-H. Lee, J. Chem. Phys. 2003, 119, 6282
(44) Ren-Jie Lin; Feng-Yi Li; Hui-Lung Chen J. Phys. Chem. C 2011, 115, 521
(45) G. Novell-Leruth; A. Valcarcel; A. Clotet; J. Ricart; J. Perez-Ramirez J. Phys. Chem. B, 2005, 109, 18061
(46) W. K. Offermans; A. P. J. Jansen; R. A. van Santen Surf. Sci. 2006, 600, 1714
(47) S. Stolbov; T. S. Rahman J. Chem. Phys. 2005; 123, 204716
(48) Chia-Ching Wang; Ya-Jen Yang; Jyh-Chiang Jiang; Dah-Shyand Tsai; Horng-Ming Hsieh J. Phys. Chem. C 2009, 113, 17411–17417
(49) S.-G. Wang; D.-B. Cao; Y.-W. Li; J. Wang; H. Jiao J. Phys. Chem. B 2006, 110, 9976–9983.
(50) S.-G. Wang; D.-B. Cao; Y.-W. Li; J. Wang; H. Jiao Surf. Sci. 2006, 600, 3226–3234.
(51) R. M. Watwe; H. S. Bengaard; J. R. Rostrup-Nielsen; J. A. Dumesic; J. K. Nørskov J. Catal. 2000, 189, 16–30.
(52) C.-T. Au; C.-F. Ng; M.-S. Liao J. Catal. 1999, 185, 12–22.
(53) I. M. Ciobica; R. A. van Santen J. Phys. Chem. B 2002, 106, 6200–6205.
(54) I. M. Ciobica; F. Frechard; R. A. van Santen; A. W. Kleyn; J. P. J. Hafner J. Phys. Chem. B 2000, 104, 3364–3369.
(55) D. A. Hickman; L. D. Schmidt Science 1993, 259, 343.1
(56) B. S. Bunnick; G. J. Kramer J. Catal. 2006, 242, 309.
(57) J. Chen; Z.-P. Liu J. Am. Chem. Soc. 2008, 130, 7929.
(58) J. Cheng; P. Hu; P. Ellis; S. French; G. Kelly; C. M. Lok J. Phys. Chem. C 2009, 113, 8858.
(59) M. Blanco-Reya; S. J. Jenkins J. Chem. Phys. 2009, 130, 014705
(60) N. Zobela; F. Behrendt J. Chem. Phys. 2006, 125, 074715
(61) S. Nave; B, Jackson J. Chem. Phys. 2009, 130, 05701
(62) E. Nikolla; J. Schwank; S. Linic J. Catal. 2009, 263, 220
(63) B. Xing; X. Y. Peng; G. Chang Wang; Z.F Shang, J. Mol. Catal. A: Chem. 2010, 315, 187
(64) D. Knapp; T. Ziegler J. Phys. Chem. C 2008, 112, 17311
(65) Wen-Hung Chung; Dah-Shyang Tsai the report of IrO2 2011
(66) J C. Boettger Phys. Rev. B 1994, 49, 16798

QR CODE