簡易檢索 / 詳目顯示

研究生: 陳又嘉
Yu-Chia Chen
論文名稱: 添加劑對於不同基礎油與不同材料之磨潤性能的影響
Effects of Oil Additives on Tribological Performance of Different Base Oils and Different Materials
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 張復瑜
Fuh-Yu Chang
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 197
中文關鍵詞: 四球式磨耗極壓添加劑PAG磨潤性能陶瓷
外文關鍵詞: Four-ball wear, Extreme pressure additive, PAG, Tribological performance, Ceramics
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文目的在於探討不同濃度的磷系(P)、硫系(S)及二烷基二硫代磷酸鋅(zinc dialkyl dithiophsphates, ZDDP)添加劑對聚烷基二醇合成油(Polyalkylene glycol, PAG)與礦物油(Mineral Oil, MN)不同溫度條件之耐極壓性能,並使用軸承鋼與氧化鋯陶瓷球進行四球滑動磨耗實驗,分析不同材料之磨耗型態,藉此評估油品之磨潤性能。
試驗結果顯示在較輕負載及室溫下,PAG冷凍油與MN礦物油已經具備良好的磨潤性能,加入添加劑不一定能提升其磨潤能力,但在較高負載及高溫下,基礎油之磨潤能力降低,此時加入適當濃度的添加劑皆能有效提升耐極壓及抗磨耗能力。
陶瓷球因具有燒結結構,在極壓狀態下會發生不同於鋼材的磨耗型態,並造成大量的磨耗,而加入磷系添加劑能有效提升磨潤能力,硫系添加劑則無法發揮其效能。


This investigation studies the effect of the percentage of sulfur-based, phosphorus-based and ZDDP-based (zinc dialkyl dithiophsphates) additives mixed in PAG (polyalkylene glycol oil) and MN (mineral oil) by using AISI 52100 stabilized and ceramics (ZrO2) for four-ball wear test specimens to figure out the tribological performance in the wear test.
According to the experimental results, PAG and MN comes with good tribological performance on low load in room temperature. When load or temperature raised, the extreme pressure resistance and anti-wear resistance of PAG and MN will decline fast. In the meantime, mixing appropriate percentage of additives in PAG and MN will improve tribological performance.
Because of the structure of ZrO2 by sintering, thus atypical wear performance caused serious wear scar in the wear tests, nevertheless, mixing phosphorus additives in PAG will improve tribological performance.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 模型構想簡介 3 第二章 文獻回顧 4 2.1 基礎油 4 2.2 添加劑 6 2.2.1 極壓添加劑的磨潤特性 8 2.2.2 ZDDP添加劑的磨潤特性 10 2.3 潤滑模式與潤滑狀態影響摩擦係數的因數 13 2.4 潤滑膜種類與特性 17 2.5 磨耗機構 22 2.6 化合膜生成速率與濃度及溫度關係 24 2.7 潤滑模式與摩擦行為討論 28 2.8 球體表面型態與接觸行為討論 32 第三章 實驗設備與方法 41 3.1 實驗儀器 41 3.2 分析儀器 47 3.3 試片規格 48 3.4 潤滑油添加劑 50 3.5 試驗用油 52 3.6 磨耗試驗條件 55 3.7 實驗步驟 56 第四章 結果與討論 59 4.1 不同濃度的不同添加劑對MN礦物油之磨潤性能影響 59 4.1.1 MN礦物油之磨耗試驗與磨潤性能分析 61 4.1.2 不同濃度硫系添加劑與MN礦物油之磨耗試驗與磨潤性能分析 68 4.1.3 不同濃度磷系添加劑與MN礦物油之磨耗試驗與磨潤性能分析 77 4.1.4 不同濃度ZDDP添加劑與MN礦物油之磨耗試驗與磨潤性能分析 85 4.2 不同濃度的不同添加劑對PAG冷凍油之磨潤性能的影響 93 4.2.1 PAG冷凍油之磨耗試驗與磨潤性能分析 97 4.2.2 不同濃度硫系添加劑與PAG冷凍油之磨耗試驗與磨潤性能分析 106 4.2.3 不同濃度磷系添加劑與PAG冷凍油之磨耗試驗與磨潤性能分析 123 4.2.4 不同濃度ZDDP添加劑與PAG冷凍油之磨耗試驗與磨潤性能分析 139 4.3 不同添加劑對不同基礎油的磨潤性能影響 157 4.4 不同極壓添加劑加入PAG冷凍油在不同溫度以陶瓷材料進行磨耗試驗與磨潤性能分析 159 第五章 結論 176 5.1 結論 176 5.2 建議 177 參考文獻 178

[1] 林榮盛,“潤滑學”,全華科技圖書股份有限公司,1987年。
[2] 張景河等,“現代潤滑油與燃料添加劑”,中國石化出版社,1992年。
[3] A. Molina, “Isolation and Chemical Characterization of a Zinc Dialkyldithiophosphate-Derived Anti-wear Agent”, ALSE Trans, Vol. 30, pp. 479-485, 1987.
[4] J. M. Martin, M. Belin and J. L. Mansot, “Friction-Induced Amorphization with ZDDP-An EXAFS Study”, ASLE Trans, Vol. 29, pp. 523-531, 1986.
[5] 徐濱士,“神奇的表面工程”,清華大學出版社,2000年。
[6] B. Podgornik and J. Vizintin, “Tribological reactions between oil additives and DLC coatings for automotive applications”, Surface and Coatings Technology, Vol. 200, pp. 1982-1989, 2005.
[7] A. Bhattacharya, T. Singh and V.K. Verma, “EP activity evaluation of cyclic disulphides using ball bearings of different compositions”, Tribology International, Vol.23, pp. 361-365, 1990.
[8] 溫詩鑄、黃平,“摩擦學原理”,清華大學出版社,2002年。
[9] 林原慶,“ZDDP添加劑在邊界潤滑下的抗磨耗研究”,博士論文,國立台灣大學,1993年。
[10] I. Mahdi, A. Srivastav, R. Garg, and H. Mishra, “Tribological Behaviour of ZDDP Anti Wear Additive with and without Contaminants”, International Journal of Mechanical Engineering and Technology (IJMET), vol. 3, pp. 354-359, 2012.
[11] J. Sotres and T. Arnebrant, “Experimental Investigations of Biological Lubrication at the Nanoscale: The Cases of Synovial Joints and the Oral Cavity”, Lubricants, pp. 102-131, 2013.
[12] 李克讓,“磨潤工程 : 潤滑概論”,三民書局,1987年。
[13] A.K. Tripathi, A. Bhattacharya, R. Singh and V.K. Verma, “Tribological studies of 1-alkyl-2,5-dithiohydrazodicarbonamides and their Mo–S complexes as EP and multifunctional additives”, Tribology International, Vol. 33, pp. 13-20, 2000.
[14] X. Zhao, J. Liu, B. Zhu, H. Miao and Z. Luo, “Effect of anti-wear additives on the friction and wear of Si3N4 / steel sliding contacts”, Wear, Vol. 201, pp. 99-105, 1996.
[15] A. Sethuramiah and Rajesh Kumar, “Modeling of Chemical Wear: Relevance to Practice”, Elsevier, 2016.
[16] B. Podgornik, S. Jacobson and S. Hogmark, “Influence of EP and AW additives on the tribological behaviour of hard low friction coatings”, Surface and Coatings Technology, Vol. 165, pp. 168–175, 2003.
[17] O. Gorbatchev, M. I. DeBarrosBouchet , J. M. Martin, D. Léonard, T. Le-Mogne, R. Iovine, B. Thiebaut and C. Héau, “Friction reduction efficiency oforganic Mo-containing Fmadditives associated to ZDDP for steel and carbon-based contacts”, Tribology International Vol. 99, pp. 278-288, 2016.
[18] DIN5032 : Verschleiβ-Begriffe, Analyse Von Verschlei β Vorgangen, Gliederung des Verschlei β gebietes, Beuth Verlag, Berlin, 1979.
[19] G. Straffelini, “Fricion and Wear”, Springer, 2015.
[20] E. Rabinowicz, “An adhesive wear model based on variations in strength values”, Wear, vol. 63, pp. 175-181, 1980.
[21] N. P. Suh and H. C. Sin, “The genesis of friction”, Wear, vol. 69, pp. 91-114, 1986.
[22] M.J. Neale, “The tribology handbook 2nd”, Boston, Butterworth-Heinemann, 1995.
[23] Frank Wilkinson, “Chemical Kinetics and Reaction Mechanisms”, Van Nostrand Reinhold Co., 1980.
[24] 鄧禮堂,“化學反應工程”,高立圖書有限公司,1985年。
[25] 邱錦德,“極壓添加劑於不同基礎油中之磨潤行為”,碩士論文,國立台灣科技大學,2004年。
[26] G. W. Stachowiak and A. W. Batchelor, “Engineering Tribology 4th”, Elsevier, 2014.
[27] G. M. Hamilton, “Explicit equations for the stresses beneath a sliding spherical contact”, Proc Instn Mech Engrs, Vol. 197, pp. 53-59, 1983.
[28] J. F. Archard, “The Temperature of Rubbing Surface”, Wear, Vol. 2, pp. 438-455, 1959.
[29] W. Piekoszewski, M. Szczerek and W. Tuszynski, “The action of lubricants under extreme pressure conditions in a modified four-ball tester”, Wear, Elsevier, 2001.
[30] 彭世偉,“不同冷媒對極壓添加劑磨潤性能的影響”,碩士論文,國立台灣科技大學,2016年。
[31] Tedric A. Harris and Michael N. Kotzalas, “Essential Concepts of Bearing Technology 5th”, CRC Press, pp. 301, 2006.
[32] Gary R. Halford, “Fatigue and Durability of Structural Materials”, ASM International, pp. 405, 2006.
[33] DIC Corporation. (Website : www.dic-global.com)
[34] Colonial Chemical, Inc. (Website : www.colonialchem.com)
[35] Elco Corporation. (Website : elcocorp.com)
[36] Polyethylene glycol monooleyl ether phosphate, CAS No. 39464-69-2. (Website : www.chemblink.com/products/39464-69-2.htm)
[37] 慧久股份有限公司。(網址:www.keiku.net)
[38] 台灣中油股份有限公司潤滑油事業部。(網址:new.cpc.com.tw/division/lb/)
[39] Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method), D-4172, ASTM, 2016.
[40] John F. Moulder, “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics Division, Perkin-Elmer Corporation, 1992.
[41] Crist B. Vincent, “Handbook of monochromatic XPS spectra”, Wiley, 2000.

無法下載圖示 全文公開日期 2023/07/26 (校內網路)
全文公開日期 2028/07/26 (校外網路)
全文公開日期 2028/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE