簡易檢索 / 詳目顯示

研究生: 呂宜錚
Yi-Cheng Lu
論文名稱: 聚對苯二甲酸乙二酯/無機物複合材料之生物相容性、機械性質、熱性質及結晶性質研究
Biocompatibility, Mechanical, Thermal, and Crystallization Properties of Poly(ethylene terephthalate)/ Inorganic Composites
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
吳昌謀
Chang-Mou Wu
鄒智揮
Chi-Hui Tsou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 聚對苯二甲酸乙二酯無機添加物成核性質結晶速率抗菌性生物毒性
外文關鍵詞: Poly(ethylene terephthalate), Inorganic Filler, Nucleation, Crystallization Rate, Anti-Bacteria, In Vitro Cytotoxicity Test
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚對苯二甲酸乙二酯(PET)是現今市面上最被廣泛使用的塑料之一,但由於其結晶速率緩慢、尺寸穩定性不佳、材料本身不具抗菌性等缺點,造成產品上受到限制,因此本研究希望透過改質的方法來改善PET的性質,使它能使用在更多方面。
    本研究首先利用熔融混煉法製備PET/無機物複合材料,並探討其物理及化學性質變化,兩種無機物分別佔整體的0至2phr與0至3wt%。所得之複合材料以熱重損失分析儀(TGA)分析不同比例樣品的熱裂解溫度及其熱殘餘量;利用示差掃描熱量分析(DSC)以10℃/min的速率測試熔融行為,並且使用Avrami equation分析結晶速率,和等溫結晶動力學;再藉由掃描式電子顯微鏡(SEM)觀察複合材料的斷面型態、判斷基材與摻混物的相容情形;以拉伸強力測試摻混不同比例的複材的機械性質變化;並用X光繞射分析儀(XRD)、傅立葉紅外線光譜(FTIR)分析各樣品的特徵峰和官能基團;最後透過細胞相容性實驗可以看出研究中的複合材料皆具有良好的生物相容性;同時也利用抗菌實驗證實樣品具備抗菌能力,可望能將此兩種複合材料有效地應用在生醫材料、紡織工業等各種民生用品上。


    Poly(ethylene terephthalate) (PET) is one of the most popular polymer for the recent decades. However, several deflects of this material such as slow crystallization rate, poor dimensional stability, and no antibacterial ability has limited its applications. Therefore, in this study, the properties of PET was modified with two kinds of inorganic matters.
    First, PET/inorganic composites were prepared by melt blending. In the composites, the content ranges from 0 phr to 2 phr; and 0 wt% to 3 wt% respectively Thermogravimetric analyzer (TGA) was used to study the thermal stability of the samples. Differential scanning calorimeter (DSC) was used to analyze melt crystallization behavior and melting behavior at 10℃/min rate. DSC was also used to analyze crystallization rate and isothermal crystallization kinetics through Avarami equation. The microstructure of cross-sections of PET, PET/inorganic composites were observed using scanning electron microscopy (SEM). With tensile test measurement, several mechanical properties of the composites were obtained. Crystalline structure was determined using X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR) was used to study the functional groups of PET/inorganic composites. By conducting in vitro cytotoxicity test, these composites were proved to possess excellent biocompatibility. Lastly, antibacterial activities were tested and the results showed good antibacterial characteristics in all PET/inorganic composites. After the modification, these new materials would be suitable for biomaterial, textile industry, and other daily commodities.

    摘要 Ⅰ ABSTRACT Ⅱ 致謝 Ⅲ 總目錄 Ⅳ 圖目錄 Ⅶ 表目錄 X 第一章 緒論 1-1 研究背景 1 1-2 研究目的 2 第二章 文獻回顧 2-1 熔融混煉原理 3 2-2 等溫結晶動力學與多熔融峰行為 2-2-1 晶體成長 5 2-2-2 玻璃轉移溫度 7 2-2-3 AVRAMI方程式 8 2-2-4 多熔融峰行為 10 2-3 實驗材料介紹 2-3-1 聚對苯二甲酸乙二酯 11 2-3-2 奈米銀 13 2-3-3 活性碳 14 2-3-4 蛤蜊殼粉 15 第三章 實驗 3-1 實驗材料與藥品 16 3-2 實驗儀器 18 3-3 實驗流程 3-3-1 PET/奈米銀活性碳 20 3-3-2 PET/蛤蜊殼粉 21 3-4 材料配置 3-4-1 熔融混煉步驟 22 3-4-2 自動熱壓成型步驟 22 3-5 材料物性測試 3-5-1 熱重損失分析 23 3-5-2 示差掃描熱量分析 24 3-5-3 掃描式電子顯微鏡分析與能量分散譜分析 25 3-5-4 拉伸強力分析 25 3-5-5 X光繞射分析 26 3-5-6 傅立葉紅外線光譜分析 26 3-6 細胞相容性 3-6-1 細胞株來源與培養條件 27 3-6-2 細胞株的培養與繼代 27 3-6-3 MTT細胞存活率分析 29 3-6-4 細胞毒性試驗 30 3-7 抗菌性試驗 3-7-1 微生物菌種來源 31 3-7-2 抗菌定性實驗 31 3-7-3 抗菌定量實驗 32 第四章 PET/奈米銀活性碳 結果與討論 4-1 熱重損失分析 33 4-2 熱學性質分析 35 4-3 等溫結晶動力學 4-3-1 結晶速率分析 38 4-3-2 AVRAMI分析 41 4-4 表面結構分析 45 4-5 能量分散譜分析 47 4-6 拉伸強力分析 50 4-7 X光繞射分析 51 4-8 傅立葉紅外線光譜分析 53 4-9 細胞毒性測試 55 4-10 抗菌性試驗 4-10-1 抗菌定性實驗 59 4-10-2 抗菌定量實驗 61 第五章 PET/蛤蜊殼粉 結果與討論 5-1 熱重損失分析 63 5-2 熱學性質分析 65 5-3 等溫結晶動力學 5-3-1 結晶速率分析 68 5-3-2 AVRAMI分析 71 5-4 表面結構分析 76 5-5 能量分散譜分析 78 5-6 拉伸強力分析 81 5-7 X光繞射分析 82 5-8 傅立葉紅外線光譜分析 84 5-9 細胞毒性測試 86 5-10 抗菌性試驗 5-10-1 抗菌定性實驗 90 5-10-2 抗菌定量實驗 92 第六章 結論 94 第七章 參考文獻 97

    [1] 郭弘德, "插閂型分配式混合元件於單螺桿押出機之最佳化設計," 應用化學系, 國立交通大學, 2002.
    [2] I. Manas-Zloczower, A. Nir, and Z. Tadmor, "Dispersive mixing in internal mixers—a theoretical model based on agglomerate rupture," Rubber Chemistry and Technology, vol. 55, no. 5, pp. 1250-1285, 1982.
    [3] 林建宏, "以混練法製備ABS樹脂/奈米二氧化鈦複合材料之研究," 化學工程與材料工程學系奈米材料碩士班, 中國文化大學, 2013.
    [4] 陳紀淵, "以混煉法製備聚丙烯/改質奈米雲母複合材料之研究," 材料科學與奈米科技研究所, 中國文化大學, 2009.
    [5] R. Andres and M. Boudart, "Time lag in multistate kinetics: nucleation," The Journal of chemical physics, vol. 42, no. 6, pp. 2057-2064, 1965.
    [6] H. L. Frisch, "Time lag in nucleation," The Journal of chemical physics, vol. 27, no. 1, pp. 90-94, 1957.
    [7] K. Kaji, K. Nishida, T. Kanaya, G. Matsuba, T. Konishi, and M. Imai, "Spinodal crystallization of polymers: crystallization from the unstable melt," Interphases and Mesophases in Polymer Crystallization III, pp. 187-240, 2005.
    [8] 溫禮鴻, "聚丙烯/聚對苯二甲酸丙二酯摻合體之相容性及結晶行為研究," 有機高分子研究所, 國立臺北科技大學, 2005.
    [9] 黃芷翎, "聚乳酸/魚鱗粉骨生醫複合材料之開發研究," 材料科學與工程系, 國立臺灣科技大學, 2016.
    [10] S. H. Park, S. G. Lee, and S. H. Kim, "Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites," Composites Part A: Applied Science and Manufacturing, vol. 46, pp. 11-18, 2013.
    [11] W. Weng, G. Chen, and D. Wu, "Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites," Polymer, vol. 44, no. 26, pp. 8119-8132, 2003.
    [12] J. Mulder, Basic principles of membrane technology. Springer Science & Business Media, 2012.
    [13] 王建智, "製膜溶劑對聚(1-三甲基矽烷-1-丙炔)膜之氣體滲透性隨時間下降行為的影響," 化學工程研究所, 元智大學, 2001.
    [14] M. McCaig and D. R. Paul, "Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart I. Experimental observations," Polymer, vol. 41, no. 2, pp. 629-637, 2000.
    [15] M. McCaig, D. R. Paul, and J. Barlow, "Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart II. Mathematical model," Polymer, vol. 41, no. 2, pp. 639-648, 2000.
    [16] X. Chen, C. Li, and W. Shao, "Isothermal crystallization kinetics and melting behaviour of PET/ATO nanocomposites prepared by in situ polymerization," European polymer journal, vol. 43, no. 8, pp. 3177-3186, 2007.
    [17] A. Jeziorny, "Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC," Polymer, vol. 19, no. 10, pp. 1142-1144, 1978.
    [18]B. Wunderlich, "Macromolecular Physics, Vol. 2, Crystal Nucleation, Growth, Annealing, Vol. 3, Crystal Melting," ed: Academic Press, New York, 1976.
    [19] H.-L. Chen, J. C. Hwang, and C.-C. Chen, "Multiple melting and crystal annealing of poly (ethylene terephthalate) in its blends with poly (ether imide)," Polymer, vol. 37, no. 24, pp. 5461-5467, 1996.
    [20] H. G. Kim and R. E. Robertson, "Multiple melting endotherms in isothermally melt‐crystallized poly (butylene terephthalate)," Journal of Polymer Science Part B: Polymer Physics, vol. 36, no. 10, pp. 1757-1767, 1998.
    [21] J. W. Lee, S. W. Lee, B. Lee, and M. Ree, "Synthesis and Non-Isothermal Crystallization Characteristics of Poly [(ethylene)-co-(trimethylene terephthalate)] s," Macromolecular Chemistry and Physics, vol. 202, no. 15, pp. 3072-3080, 2001.
    [22] P. V. Nikitin, S. Lam, and K. Rao, "Low cost silver ink RFID tag antennas," in Antennas and Propagation Society International Symposium, 2005 IEEE, 2005, vol. 2, pp. 353-356: IEEE.
    [23] M. Beattie and J. Taylor, "Silver alloy vs. uncoated urinary catheters: a systematic review of the literature," Journal of clinical nursing, vol. 20, no. 15‐16, pp. 2098-2108, 2011.
    [24] H. Renner et al., "Silver, silver compounds, and silver alloys," Ullmann's Encyclopedia of Industrial Chemistry, 1993.
    [25] J. Romanos et al., "Nanospace engineering of KOH activated carbon," Nanotechnology, vol. 23, no. 1, p. 015401, 2011.
    [26] C. L. Mangun, K. R. Benak, J. Economy, and K. L. Foster, "Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia," Carbon, vol. 39, no. 12, pp. 1809-1820, 2001.
    [27] D. Nelson, T. Rains, and J. Norris, "High-purity calcium carbonate in freshwater clam shell," Science, vol. 152, no. 3727, pp. 1368-1370, 1966.
    [28] 許敬英, "牡蠣殼粉抗菌劑在各種食品之應用," 食品科學系所, 國立屏東科技大學, 2012.
    [29] 郭仁杰, 劉富光, 何雲達, 廖一久. (2001). 優質文蛤的養殖技術.
    [30] K. Shahverdi–Shahraki, T. Ghosh, K. Mahajan, A. Ajji, and P. J. Carreau, "Morphology and thermal properties of poly (ethylene terephthalate)‐modified kaolin nanocomposites," Polymer Composites, vol. 37, no. 5, pp. 1443-1452, 2016.
    [31] D. Nevskaia, A. López-Peinado, and A. Jerez, "Porosity and adsorption properties of an activated charcoal," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 187, pp. 167-175, 2001.
    [32] 解强, 张香兰, 李兰廷, and 金雷, "活性炭孔结构调节: 理论, 方法与实践," 新型炭材料, vol. 20, no. 2, pp. 183-190, 2005.
    [33] P. Khanna, N. Singh, S. Charan, V. Subbarao, R. Gokhale, and U. Mulik, "Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method," Materials Chemistry and Physics, vol. 93, no. 1, pp. 117-121, 2005.
    [34] 于同隐, 卜海山, 胡家, 张炜, and 顾巧英, "The double melting peaks of poly (ethylene terephthalate)," 高分子科学, vol. 1, no. 1, pp. 83-91, 1983.
    [35] 高伯爵, "PLA/SEBS和PTT/SEBS摻混物之生物相容性、機械性質、熱性質及結晶性質研究," 材料科學與工程系, 國立臺灣科技大學, 2015.
    [36] J. M. Huang and F. C. Chang, "Crystallization kinetics of poly (trimethylene terephthalate)," Journal of Polymer Science Part B: Polymer Physics, vol. 38, no. 7, pp. 934-941, 2000.
    [37] H. Wang, Z. Li, Y. Liu, X. Zhang, and S. Zhang, "Degradation of poly (ethylene terephthalate) using ionic liquids," Green Chemistry, vol. 11, no. 10, pp. 1568-1575, 2009.
    [38] C.-G. Lee, H. Hur, and M.-B. Song, "Oxidation behavior of carbon in a coin-type direct carbon fuel cell," Journal of the electrochemical society, vol. 158, no. 4, pp. B410-B415, 2011.
    [39] E. Pretsch, P. Buehlmann, C. Affolter, E. Pretsch, P. Bhuhlmann, and C. Affolter, Structure determination of organic compounds. Springer, 2000.
    [40] 嚴川棋, "PET/散熱涼爽粉體複合材料之合成與功能性質研究," 有機高分子研究所, 國立臺北科技大學, 2008.
    [41] I. Ozdemir, M. Şahin, R. Orhan, and M. Erdem, "Preparation and characterization of activated carbon from grape stalk by zinc chloride activation," Fuel Processing Technology, vol. 125, pp. 200-206, 2014.
    [42] T. Dai Lam, T. V. Hoang, D. T. Quang, and J. S. Kim, "Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO 3/polypropylene nanocomposites," Materials Science and Engineering: A, vol. 501, no. 1, pp. 87-93, 2009.
    [43]S. Morfologi and T. dan Mekanik, "Glass fiber and nanoclay reinforced polypropylene composites: Morphological, thermal and mechanical properties," Sains Malaysiana, vol. 42, no. 4, pp. 537-546, 2013.
    [44] M.-s. Xia, Z.-t. Yao, L.-q. Ge, T. Chen, and H.-y. Li, "A potential bio-filler: The substitution effect of furfural modified clam shell for carbonate calcium in polypropylene," Journal of Composite Materials, vol. 49, no. 7, pp. 807-816, 2015.
    [45] C. G. Kontoyannis and N. V. Vagenas, "Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy," Analyst, vol. 125, no. 2, pp. 251-255, 2000.
    [46] R. Liu, F. Liu, S. Zhao, Y. Su, D. Wang, and Q. Shen, "Crystallization and oriented attachment of monohydrocalcite and its crystalline phase transformation," CrystEngComm, vol. 15, no. 3, pp. 509-515, 2013.

    無法下載圖示 全文公開日期 2022/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE