簡易檢索 / 詳目顯示

研究生: 周啟雄
Chi-hsiung Jou
論文名稱: 改質聚酯之抗菌性、生物相容性與界面行為
Antibacterial Activity, Biocompatibility and Interfacial Behavior of Modified Polyesters
指導教授: 胡孝光
shiao-kuang hu
楊銘乾
ming-chien yang
口試委員: 李佳音
chia-ying lee
黃玲惠
ling-huei huang
楊台鴻
tai-hung yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 111
中文關鍵詞: 抗菌性生物相容性
外文關鍵詞: Biocompatibility, Antibacterial Activity
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以掺合、或以60Co γ-ray照射技術、或臭氧改質聚酯材料,來增加其抗菌活性和生物相容性。本論文所使用的聚酯包括poly(ethylene terephthalate) (PET), poly(sodium polyethylene 5-sulfoisophthalate) (PSES), poly(2-methyl-1,3-propylene terephthalate-co-ethylene terephthalate) (PMPT), poly(1,4-cyclohexylene terephthalate-co-ethylene terephthalate) (PCHT) 四種聚酯,以及poly (3-hydroxybutyric acid) (PHB)及poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV)。
    對於PET、PMPT、PCHT纖維,先以60Co γ-ray照射處理來進行表面改質。而PHB及PHBV薄膜,則以臭氧處理來進行表面改質。改質後之樣本再接枝以幾丁聚醣(chitosan, CS)或幾丁寡醣(chitooligosaccharides, COS),並將硫酸軟骨素(chondritin-6-sulfate, ChS)或透明質酸(hyaluronic acid, HA)固定在聚酯材料表面。然後探討經改質後材料表面正電荷的多寡對表面帶負電荷的蛋白質human serum albumin (HSA)或human plasma fibrinogen (HPF)的吸附,或對革蘭氏陽性菌Staphylococcus aureus strain-1 (S. aureus-1), Staphylococcus aureus strain-2 (S. aureus-2),革蘭氏陰菌性Escherichia coli O157:H7 (E. coli O157:H7),Pseudomonas aeruginosa (P. aeruginosa),以及L929纖維母細胞的吸附或增生的影響。經改質後表面帶正電荷的聚酯修飾物與帶負電荷的細胞、細菌或蛋白質之間作用力為靜電吸引力,其吸附量均隨著正電荷密度的增加而增加,而吸附於材料表面後的細胞增生則隨著靜電吸引力增加而減少,細菌抑制則隨之增加。另一方面,在帶負電荷的聚酯修飾物表面上之細胞與細菌吸附量比未改質聚酯之中性表面上多,且增生量亦較中性表面為多。
    高分子材料與水間之界面自由能SL隨著PET/PSES摻合薄膜的混摻比例 (薄膜表面上磺酸離子的含量)增加而減少,黏著自由能的負值(-Fadh)隨SL增加而增加,細菌黏著數目亦隨之增加。-Fadh隨著材料在空氣中的表面自由能之極性分量pSv增加(負電荷的磺酸基增加)而減少且有線性關係,即表面帶負電荷愈多的材料和表面帶負電荷的細菌之間有拒斥作用使吸引力降低而降低-Fadh,使細菌不容易吸附於材料表面。
    為了探討細菌增生或抑制之動力學,本論文提出類似Michaelis-Menten(或Monod)之雙參數模式,經回歸得Vmax或V'max (最大的細菌增生或抑制速率)和Km或K'm (增生或抑制平衡解離常數)兩動力學參數,發現細菌之增生階段中,可能因部份細菌會黏著於PHBV薄膜表面,而PHBV薄膜表面並無影響細菌增生及代謝活性之因子,故PHBV的Vmax與Km值接近對照值。而在抑制過程中,最大的細菌抑制速率V'max隨胺基而增加,而降低細菌代謝活性並導致細菌死亡現象。
    為了進一步探討細菌增生或抑制,本論文亦提出三參數模式,假設細菌中的反應物質S和增生細菌反應的酵素E或抑制細菌反應的酵素E'結合成ES、E'S中間複合物,由於ES2與E'S2之平衡常數K2、K'2之回歸值非常小,表示ES、E'S中間複合物再和另一細菌反應物質S結合成ES2、E'S2可能性較小,因此由雙參數模型或三參數來描述細菌之增生及抑制動力學,其差異不大。
    本論文顯示材料表面電荷特性(電性與數目)與特定極性官能基的數目,影響材料與生物物質在界面上的作用能,是決定生物相容性與抗菌性的重要因素。


    The main focus of this thesis is to modify the surface properties of polyesters by blending, γ-ray irradiating, or ozone treating, to improve the antibacterial activity and biocompatibility of polyesters. In this work, either polyester fibers or membranes were employed: poly(ethylene terephthalate) (PET) and poly(sodium ethylene 5-sulfoisophthalte) (PSES) were blended in various ratios and made into membranes; three fibers, PET, poly(2-methyl-1,3-propylene terephthalate -co- ethylene terephthalate) (PMPT), and poly(1,4-cyclohexylene terephthalate -co- ethylene terephthalate) (PCHT) were irradiated with 60Co-γ-ray; poly(3-hydroxybutyric acid) (PHB) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) membranes were treated with ozone.
    Chitosan (CS) or chitooligosaccharides (COS) was grafted to the surfaces of irradiated or ozone-treated polyester and then grafted with hyaluronic acid (HA) or chondroitin-6-sulfate (ChS). The effect of the positive charges of CS- or COS-grafted materials on the adsorption of negatively charged proteins of human serum albumin (HSA) and human plasma fibrinogen (HPF), or the attachment and inhibition of Gram positive Staphylococus aureus strain-1 (S. aureus-1), Staphylococus aureus strain-2 (S. aureus-2), or Gram negative Escherichia coli O157:H7, and Pseudomonas aeruginosa, and the attachment and proliferation of L929 fibroblasts were studied. After grafting, the interaction between the membrane surface and the negatively charged bacteria, cells or proteins were electrostatic attraction. Thus amount of adsorption/attachment increased with the surface charge on the membranes. Moreover, the number of cells growth on surface decreased with the increase of the surface charge on the membrane and, however, bacterial inhibition on surface increased. On the other hand, on negatively charged polyester surfaces, the adsorption amount of bacteria or cells was higher than that on the neutral surface of unmodified polyester. The proliferation amount of bacteria or cells was also higher than on the neutral surface.
    The interfacial free energy between the polymer surface and the liquid (SL) decreased with number of the sulfonic group, which is thus affected by the content of PSES. The negative free energy of adhesion (-Fadh) and hence the number of attached bacteria increased as the SL increased. Furthermore, -Fadh decreased linearly with pSV (the polar component of SV) (due to the increase of negatively charged sulfonic groups). In other words, negatively-charged bacteria attracted to surface decreased as the negative charge on the polymeric surface increased, and thus -Fadh was reduced that made bacteria difficult to be adsorbed on the surface.
    To describe the maximum velocity of bacterial growth (or inhibition), Vmax(V'max) and the equilibrium dissociation of bacterial growth (or inhibition) Km (K'm)were regressed based on the Michaelis-Menten (or Monod) model. In the bacterial growth phase, the values of Vmax and Km of PHBV and the control (blank solution without polymer sample) were very close. This may be due to the adhesion of some bacteria to the surfaces of PHBV, which have no factors affecting the bacterial metabolism and growth. In the bacterial inhibition process, both V'max and K'm increased with the increase of the amine group on the surfaces. This is because amine group would bind to the surface of bacteria, interfere the bacterial metabolism and growth, and eventually would lead to the death of bacteria.
    In the three-parameter kinetic model of bacterial growth or inhibition, S (reactant in bacteria) formed complex with E (enzyme for bacterial growth reaction) or E' (enzyme for bacterial inhibition reaction) to ES and E'S. After the formation of ES and E'S complex, the possibility of another substrate binding with to form ES2 orE'S2 was much lower. Accordingly, the K2 and K'2 (equilibrium constant of bacterial growth or inhibition) were small. Thus Michaelis-Menten (or Monod) model is sufficient to describe the kinetics of bacterial growth and inhibition in this work.
    This study shows that the characteristics of surface charge (sign and density) and the number of specific polar functional groups can affect the interaction between the cells/proteins and the materials, and hence are the major factors controlling the biocompatibility and the antibacterial activity.

    中文摘要------I 英文摘要III 致 謝 ------V 目 錄------VI 圖表索引X 第一章 緒論------1 1.1 前言 ---1 1.2 文獻回顧3 1.2.1改質聚酯高分子材料及其生物相容性---3 1.2.2幾丁聚醣和幾丁寡醣之抗菌性及生物相容性--4 1.2.3透明質酸及其生物相容性--6 1.2.4 硫酸軟骨素及其生物相容性--6 1.2.5細菌黏著於高分子材料---8 1.3 研究目的--9 第二章 實驗 --12 2.1材料製備--12 2.1.1以γ-ray 接枝將CS或COS固定化於PET纖維---12 2.1.2以臭氧接枝將CS或COS固定化於PHB和PHBV薄膜--13 2.1.3 透明質酸固定化於PHBV薄膜15 2.1.4硫酸軟骨素固定化於PHBV薄膜16 2.1.5 SPES/PET混摻薄膜之製備--------17 2.2實驗分析 -21 2.2.1改質的PHB或PHBV薄膜表面性質分析---21 2.2.2 SPES/PET混摻薄膜表面性質分析-----22 2.2.3抗菌活性-----23 2.2.4 HPF和HSA蛋白質吸附------25 2.2.5 APTT(Activated partial thromboplastin time)---25 2.2.6細胞吸附與增生----25 2.2.7細菌表面特性與黏著----27 第三章 結果與討論 ---29 3.1以γ-ray接枝將幾丁聚醣和幾丁寡醣固定化於PET纖維之抗菌活性---29 3.1.1 AA和NVF接枝於PET纖維---29 3.1.2幾丁聚醣和幾丁寡醣固定化於PET纖維----30 3.1.3改質後聚酯纖維對抗菌活性之影響--35 3.2以以臭氧處理後將幾丁聚醣和幾丁寡醣固定化於PHB、PHBV薄膜之抗菌性--40 3.2.1改質PHB和PHBV薄膜表面-----40 3.2.2改質後薄膜對抗菌活性之影響------40 3.3透明質酸固定化於PHBV薄膜之抗菌性及生物相容性---46 3.3.1改質PHBV薄膜表面------46 3.3.2改質後薄膜之親水性 ----46 3.3.3改質後薄膜對抗菌活性之影響 ---47 3.3.4 HSA和HPF吸附--51 3.3.5 APTT (ativated partial thromboplastin time) --- 53 3.3.6細胞吸附和增生--54 3.4 硫酸軟骨素固定化於PHBV薄膜之抗菌性及生物相容性--59 3.4.1改質薄膜表面59 3.4.2改質後薄膜之親水性 --59 3.4.3改質後薄膜對抗菌活性之影響 ---61 3.4.4 HSA和HPF吸附--64 3.4.5細胞吸附或增生---64 3.5細菌之界面行為與PET/SPES薄膜間之界面行為--71 3.5.1材料表面磺酸基團及親水性----71 3.5.2細菌表面特性--72 3.5.3細菌和材料黏著75 3.6細菌在透明質酸固定化PHBV薄膜上之增生或抑制動力學分析-----84 3.6.1 Michaelis-Menten動力學模型-----84 3.6.2實驗數據解析----87 第四章 結論 ----93 參考文獻----96 附錄-已發表之期刊論文-111 作者簡介 --112

    1. An AH, Friedman RJ. Laboratory methods for studies of bacterial adhesion, J Microbiol Methods 30, 443-449 (1997).
    2. Desai NP, Hossainy SFA, Hubbell JA. Surface-immobilized polyethylene oxide for bacterial repellence, Biomaterials 13, 417-420 (1992).
    3. Lamba NMK. Baumgartner JN, Cooper SL. The influence of thrombus components in mediating bacterial adhesion to biomaterials, J Biomater Sci Polymer Edn 11, 1227-1237 (2000).
    4. Koneman EW, Allen SD, Janda WM, Sohreckenberger PC, Winn WC. Color Atlas and Textbook of Diagnostic Microbiology, New York: Lippincott Co, 1997, pp. 1-63.
    5. Lathem WW, Grys TE, Witowski SE, Torres AG, Kaper JB, Tarr PI, Welch RA. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor, Mol Microbiol 45, 277-288 (2002).
    6. Osipenko IF, Martinovicz VI. Grafting of acrylic on poly(ethylene terephthalate), J Appl Polym Sci 39, 935-942 (1990).
    7. Somanathan N, Balasubramaniam B, Subramaniam V. Grafting of polyester fiber, Pure Appl Chem A32 (5), 1025-1036 (1995).
    8. Karakisla M, Sacak M. Grafting of ethyl acrylate onto monofilament polyester fibers using benzoyl peroxide, J Appl Polym Sci 70, 1701-1705 (1998).
    9. Rouxhet L, Duhoux F, Borecky O, Legras R, Schneider YJ. Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and of poly(ε-caprolactone ) (PCL) films modified by and hydrolysis and of poly(ethylene terephtalate) (PET) track-etched membranes, J Biomater Sci Polymer Edn 9, 1279-1304 (1998).
    10. Atkins TW. Fabrication of microspheres using blends of poly(ethylene adipate) and poly(ethylene adipate)/ poly(hydroxybutyrate-hydroxyvalerate) with poly(caprolactone): incorporation and release of bovine serum albumin, J Biomater Sci Polymer Edn 8, 833-845 (1997).
    11. Iannace S, Ambrosio L. Effect of degradation on the mechanical properties of multiphase polymer blends: PHBV/PLLA, Pure Appl Chem A32, 881-888 (1995).
    12. Sundardi F. Radiation graft-copolymerization kinetics of poly(ethylene terephthalate) fibers, Polymer 20, 1522-1526 (1979)
    13. Mitomo H, Enôjji T. Radiation-induced graft polymerization of poly (3-hydroxybutrate) and its copolymer, Pure Appl Chem A32, 429-442 (1995).
    14. Park JS, Kim JH, Nho YC, Kwon OH. Antibacterial activities of acrylic acid-grafted polypropylene fabric and its metallic acid, J Appl Polym Sci 69, 2213-2220 (1998).
    15. Ramires PA. Plasma-treated PET surfaces improve the biocompatibility of human endothelial, J Biomed Mater Res 51, 535-539 (2000).
    16. FlÖsch D, Clarotti G, Geckeler KE, Schue F, GÖpel W. Characterization of plasma-treated poly(hydroxybutyrate) membrane surfaces by ESCA and contact angle measurements, J Menbrane Sci 73, 163-172(1992).
    17. Fujimoto K, Takebayashi Y, Inoue H, Ikada Y. Ozone-induced graft polymerization onto polymer surface, J Polym Sci Pol Chem 31, 1035-1043 (1993).
    18. Kulik EA, Ivanchenko MI, Kato K, Sano S, Ikada Y. Peroxide generation and decomposition on polymer surface, J Polym Sci Pol Chem 33, 323-330 (1993).
    19. Uchida E, Uyama Y, Ikada Y. Surface graft polymerization of acrylamide onto poly(ethylene terephthalate) film by UV irradiation, J Polym Sci Pol Chem 27, 527-537 (1989).
    20. Uchida E, Uyama Y, Ikada Y. A novel method for graft polymerization onto poly(ethylene terephthalate) by UV-irradiation without degassing, J Appl Polym Sci 41, 677-687 (1990).
    21. Uchida E, Uyama Y, Ikada Y. Surface graft polymerization of ionic monomers onto poly (ethylene terephthalate) by UV-irradiation without degassing, J Appl Polym Sci 47, 417-424 (1993).
    22. Lazare S, Srinivsan R. Surfaces properties of poly (ethylene terephthalate) film modified by far-ultraviolet radiation at 193 nm (laser) and 185 nm (low intensity), J Phys Chem 90, 2124 -2131 (1986).
    23. Dadsetan M, Mizadeh H, Sharifi N, Sanjani NS, Salehian P. In vitro studies of platelet adhesion on laser-treated polyethylene terephthalate surface, J Biomed Mater Res 54, 540-546 (2000).
    24. Iida J, Une T, Ishihar CA, Nishimura K, Tokura S, Mizukoshi N, Azuma I. Stimulation of non-specific host resistance against Sendai virus and Escherichia coli infections by chitin derivatives in mice, Vaccine 5, 270-274 (1987).
    25. Pedram MY, Lagos A. On the modification of chitosan through grafting, Pure Appl Chem A32 (5), 1037-1047 (1995).
    26. Fang Y, Liu S, Hu D, Cui Y, Xue M. Complexes of chitosan and poly(methacrylic acid) studied by fluorescence technique, Polym Bull 43, 387-394 (1999).
    27. Shigeno Y, Kondo K, Takemoto K. Functional monomers and polymers. Radiation-induced graft polymerization of styrene onto chitin and chitosan, J Macromol Sci Chem A17 (4), 571-583 (1982).
    28. Huh MW, Kang IK, Lee DH, Kim WS, Park LS, Min KE, Seo KH. Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephalate) prepared by plasma glow discharge, J Appl Polym Sci 81, 2769-2778 (2001).
    29. Knudson CB. Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix, J Cell Biol 102, 825-834(1993).
    30. Ishihara M, Sato M, Hattori H, SaitoY, Yura H, Ono K, Masuoka K, Kikuchi M, Fujikawa K, Kurita A. Herparin-carrying polystyrene (HCPS)-bound collagen substratum to immobilize heparin-binding growth factors and to enhance cellular growth, J Biomed Mater Res 56, 536-544 (2001).
    31. Osborne CS, Reid WH, Grant MH. Investigation into the biological stability of collagen/chordroitin-6-sulphate gel and contraction by fibroblasts and keratinocytes: the effect of crosslinking agent and diamines, Biomaterials 20, 283-290 (1999).
    32. Leach JB, Bivens KA, Jr CWP, Schmidt CE. Photocrosslinked hyaluronic acid hydrogel: nature, biodegradable tissue engineering scaffolds, Biotechnol Bioeng 82, 578-589 (2003).
    33. Hocking PJ, Marchessault RH. Biopolyester. In Chemistry and Technology of Biodegradable Polymers, Ed by Griffin GJL, New York: Blackie Academic & Professional, 1994, pp. 48-96.
    34. Marois Y, Zhang Z, Vert M, Deng X, Lenz R, Guidoin R. Mechanism and rate of degradation of polyhydroxyoctanoate film in aqueous media: A long-term in vitro study, J Biomed Mater Res 49, 216-224 (2000).
    35. Holland SJ, Yasin M, Tighe BJ. Polymers for biodegradable medical device VΙΙ. Hydroxybutrate-hydroxyvalerate copolymers: degradation of copolymers and their blends with polysaccharides under in vitro physiological conditions, Biomaterials 11, 206-215 (1990).
    36. Hocking PJ, Timmins MR, Scherer TM, Fuller RC, Lenz RW, Marchessault RH. Enzymatic degradability of poly(β-hydroxybutyrate) as a function of tacticity, Pure Appl Chem A32, 889-894 (1995).
    37. Foster LJR, Tighe BJ. Enzymatic assay of hydroxybutyric acid monomer formation in poly(β-hydroxybutyrate) drgradation studies, Biomaterials 16, 341-343 (1995).
    38. Lauzier C, Revol JF, Debzi EM, Marchessault RH. Hydrolytic degradation of isolated poly(β-hydroxybutyrate) granules, Polymer 35, 4156-4162 (1994).
    39. Atkins TW, Peacock SJ. In vitro biodegradation of poly (β-hydroxybutyrate- hydroxyvalerate) microspheres exposed to hanks buffer, newborn calf serum, pancreatin and synthetic gastric juice, J Biomater Sci Polymer Edn 7, 1075-1084 (1996).
    40. Korkusuz F, Korkusuz P, Eksioglu F, Gursel I, Hasirci V. In vivo response to biodegradable controlled antibiotic release systems, J Biomed Mater Res 55, 217-228 (2001).
    41. Olsen R, Schwartzmiller D. Biomedical application of chitin and its derivatives. In Chitin and Chitosan , Ed by Skjak BG, Anthonsen T, Sandford P, London and New York: Elsevier Applied Science, 1989, pp. 813-828.
    42. Sandford PA. Chitosan: commercial uses and potential applications. In Chitin and Chitosan, Ed by Gudmund SB, Anthonsen T, Sandford P. London and New York: Elsevier Applied Science, 1988, pp. 51-69.
    43. Shin Y, Yoo DI, Jang J. Molecular weight effect on antimicrobial activity of chitosan treated cotton fabrics, J Appl Polym Sci 80, 2495-2501 (2001).
    44. Uchida Y, Izume M, Ohtakara A. Preparation of chitosan oligomers with purified chitosanase and its application. In Chitin and Chitosan, Ed by Gudmund SB, Anthonsen T, Sandford P. London and New York: Elsevier Applied Science, 1988, pp. 373-382.
    45. Suzuki K, Tokoro A, Okawa Y, Suzuki S, Suzuki M. Immunopotentialing effect of N-acetylpchito-oligosaccharides, In Chitin in Nature and Technology, Ed by Muzzarelli R, Jeuniaux C, Gooday GW. New York: Plenum Press, 1986, pp. 485-492.
    46. Leuba JL, Stossel P. IR. Chitosan and other polyamine: antifungal activity and interaction with biological membranes. In Chitin in Nature and Technology, Ed by Muzzarelli R, Jeuniaux C, Gooday GW. New York: Plenum Press, 1986, pp. 215-221.
    47. Yalpani Y, Johnson F, Robinson LE. Antimicrobial activity of some chitosan derivatives. In Advances in Chitin and Chitosan, Ed by Brine CJ, Sandford PA, Zikakis JP, London and New York: Elsevier Applied Science, 1992, pp. 543-547.
    48. Chatelet C, Damour O, Domard A. Inflence of the degree of acetylation on some biological properties of chitosan films, Biomaterials 22, 261-268 (2001).
    49. Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro, Biomaterials, 18, 947-951 (1997).
    50. Malette WG, Jr Quigley HJ, Okawa Y, Adickes ED. Chitosan effect in vascular surgery, tissue culture and tissue regeneration. In Chitin in Nature and Technology, Ed by Muzzarelli R, Jeuniaux C, Gooday GW. New York: Plenum Press, 1986, pp. 435-442.
    51. Amiji MM. Surface modification of chitosan membranes by complexation-interpenertation of anionic polysaccharides for improved blood compatibility in hemodialysis, J Biomater Sci Polymer Edn 8, 281-298 (1996).
    52. Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels, J Biomed Mater Res 47, 152-169 (1999).
    53. Oerther S, Gall HL, Payan E, Lapicque F, Presle N, Hubert P, Dexheimer J, Netter P, Lapicque F. Hyaluronate-alginate gel as a novel biomaterial: mechanical properties and formation mechanism, Biotechnol Bioeng 63, 206-215 (1999).
    54. Choi YS, Hong SR, Lee YM, Song KW, Park MH. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked geltin-hyaluronate sponge, J Biomed Mater Res (Appl Biomater) 48, 631-639 (1999).
    55. Liu LS, Thompson AY, Heidaran AM, Poser JW, Spiro RC. An osteoconductive collagen/hyaluronate matrix for bone regeneration, Biomaterials 20, 1097-1108 (1999).
    56. Denuziere A,Ferrier D, Damour O, Domard A. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties, Biomaterials 19, 1275-1285 (1998).
    57. Magnani A, Barbucci R, Montanaro L, Arciola CR, Lamponi S. In vitro study of blood-contacting properties and effect on bacterial adhesion of a polymeric surface with immobilized heparin and sulphated hyaluronic, J Biomater Sci Polymer Edn 11, 801-815 (2000).
    58. Makatsori E, Tsegenidis T, Karamanos K. Effect of mitogens on synthesis and distribution of heparan and chondroitin by human leukemic B, T cell and monocytes studied by high-performance liquid chromatography and radiochemical detection, Biomed Chromatogr 16, 534-538 (2001).
    59. Kito H, Matsuda T. Biocompatible coatings for luminal and outer surfaces of small-caliber artificial grafts, J Biomed Mater Res 30, 321-330 (1996).
    60. Osborne CS, Reid WH, Grant MH. Investigation into cell growth on collagen/chondroitin-6-sulfate gels: the effect of crosslinking agents and diamines, J Mater Sci Mater Med 8, 179-184 (1997).
    61. Pieper JS, Oosterhof PJ, Dijkstra JH, Veerkamp TH van K. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulfate, Biomaterials 20, 847-858 (1999).
    62. Hanthamrongwit WH, Reid WH, Grand MH. Chondroitin-6-sulfate incorporated into collagen gels for the growth of human keratinocytes: the effect of cross-linking agents and diamines, Biomaterials 17, 775-780 (1996).
    63. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of artificial cartilage, J Biomed Mater Res 34, 211-220 (1997).
    64. Vitte J, Benoliel AM , Pierres A, Bongrand P. Is there a predicatable relationship between surface physical-chemical properties and cell behaviour at the interface?, Eur Cell Mater 7, 52-63 (2004).
    65. Stanford CM, Solursh M,Keller JC. Significant role of adhesion properties of primary osteoblast-like cell in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecular, J Biomed Mater Res 47, 345-352 (1999).
    66. Evanko SP, Wight TN. Intracellular localization of hyaluronan in proliferating cells, J Histochem Cytochem 47, 1331-1342 (1999).
    67. Normand G, Hicks D, Dreyfus H. Neurotrophic growth factor stimulate glycosaminoglycan synthesis in identified retinal cell populations in vitro, Glycobiology 8, 1227-1235 (1998).
    68. Salloum DS, Olenych SG, Keller TCS, Schlenoff JB. Vascular smooth mucle cells on polyelectrolyte multilayers: hydrophobicity-directed adhesion and growth, Biomacromolecules 6, 161-167 (2005).
    69. Katsikogianni M, Missirlis. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria material interactions, Eur Cell Mater 8, 37-57 (2004).
    70. Fletcher M, Pringle JH. The effect of surfaces free energy and medium tension on bacterial attachment to solid surface, J Colloid Interf Sci 104, 5-14 (1985).
    71. Gumusderelioglu KM , Pesmen A. Microbial adhesion to ionogenic PHEMA, PU and PP implants, Biomaterials 17, 443-449 (1996)
    72. Verheyen CCPM, Dhert WJJ, Hogervorst MA de B, Reijden TJK, Petit PLC, Groot K. Adherence to a metal polymer and composite by staphylococcus aureus and staphylococcus epidermidis, Biomaterials 17, 383-391 (1993).
    73. Minagi S, Miyake Y, Tsuru T, Suginaka H. Hydrophobic interaction in candida albicans and candida tropicalis adherence to various denture base resin materials, Infect Immun 47, 11-14 (1985).
    74. Hogt AH, Dankert J, Vries der JA, Feijen J. Adhesion of coagulase-negative staphylococci to biomaterials, J Gen Microbiol 129, 2959-2968 (1983).
    75. Dankert J, Hogt AH, Vires der JA, Feijen J. Adhesion of coagulase-negative staphylococcus epidermidis and staphylococcus sayphyticus to a hydrophobic biomaterials, J Gen Microbiol 131, 2485-2491 (1985).
    76. Klotz SA. Role of hydrophobic interaction in microbial adhesion to plastics used in medical device. In Microbial Cell Surface Hydrophobicity, Ed by Rosenberg M, Washington DC: American Society for Microbiology, 1990, pp. 107-136.
    77. Kowalczynska HM, Kaminski J. Substratum sulfonation and cell adhesion, Colloid Surface B: Biointerfaces 2, 291-298 (1994).
    78. Santerre JP, Hove PT, Vanderkamp NH, Brash JL. Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: possible correlation with anticoagulant behavior, J Biomed Mater Res 26, 39-57 (1992).
    79. Dickison RB, Nagel JA, Proctor RA, Stuart SL. Quantitative comparison of shear-dependent staphylococcus adhesion to three polyurethane ionomer analogs with distinct surface properties, J Biomed Mater Res 36, 152-162 (1997).
    80. Sano S, Kato K, Ikeda Y. Introduction of functional groups onto the surface of polyethylene for protein immobilization, Biomaterials 14, 817-822 (1993).
    81. Kato K, Ikeda Y. Immobilization of DNA onto a polymer support and its potentiality as immunoadsorbent, Biotech Bioeng 51, 581-596 (1996).
    82. Rebeix V, Sommer F, Marchin B, Baude D, Duc TM. Artificial tear adsorption on soft contact lens: methods to test surfactant efficacy, Biomaterials 21, 1197-1205 (2000).
    83. Park K, Shim HS, Dewanjee MK, Eigler NL. In vitro and in vivo studies of PEO-grafted blood-contacting cardiovascular prostheses, J Biomater Sci Polymer Edn 11, 1121-1134 (2000).
    84. Kang IK, Kwon OH, Kim MK, Lee YM, Sung YK. In vitro blood compatibility of group-grafted and heparin-immobilized polyurethanes prepared by plasma glow discharge, Biomaterials19, 239-249 (1997).
    85. Freshney RI. Culture of Animal Cells: A Manual of Basic Technique (4th Ed), New York: John Wiley & Sons, 2000, pp. 329-334.
    86. Park JC, Hwang YS, Lee YS, Park KD, Matsumura K, Hyon SH. Type I atelocollagen grafting onto ozone-treated polyurethane films: cell attachment, proliferation, and collagen synthesis, J Biomed Mater Res 52, 669-677(2000).
    87. Wu S. Polymer Interface and Adhesion, New York: Marcel Dekker Inc, 1982, pp. 169-214.
    88. Fowkes FM. Attractive force at interface, Ind Eng Chem 12, 40-53 (1964).
    89. Busscher HJ, Weerkamp AH, Mei HC, Plet AWJ, Jong HP, Arend J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion, Appl Environ Microbiol 48, 980-983 (1984).
    90. Liu Y. Adhesion kinetics of nitrifying bacteria on various thermoplastic supports, Colloid Surfaces B: Biointerfaces 5, 213-219 (1995).
    91. Tabata Y. Heterogeneous nature of radiation effect on polymers. In Irradiation of Polymeric Materials:Process, Mechanisms, and Application, Ed by Reichmanis E, Frank CW, OˋDonnell JHO, Washington DC: American Chemical Society, 1993, pp. 29-49.
    92. Ikeda T, Hirayama HH, Yamaguchi S. Tazuke P. Polycationic biocides with pendant active group: molecular weight dependence of antibacterial activity, Antimicrob Agents Chemothe 30, 132-136 (1986).
    93. Marrie TJ, Costerton JW. Scanning electron microscopic study of uropathogen adherence to a plastic surface, Appl Environ Microbiol 45, 1018-1024(1983).
    94. Eighmy TT, Maratea D, Bishop P. Electron microscopic examination of wastewater biofilm formation and structural components, Appl Environ Microb 45 1921-1931 (1983).
    95. Harris LG, Foster SJ, Richards RG. An introduction to staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesions in relation to biomaterials: review, Eur Cell Mater 4, 39-60 (2002).
    96. Wang P, Tan KL, Kang ET. Surface modification of poly (tetrafluoroethylene) films via grafting of poly(ethylene glycol) for reduction in protein adsorption, J Biomater Sci Polymer Edn 11, 169-186 (2000).
    97. Fujimoto K, Inoue H, Ikada Y. Protein adsorption and platelet adhesion onto polyurethane grafted with methoxy-poly(ethylene glycol) methacrylate by plasma technique, J Biomed Mater Res 27, 1559-1567 (1993).
    98. Tsai CC, Cheng Y, Sung HW, Hsu JC, Chen CN. Effect of heparin immobilization on the surface characteristics of biological tissue fixed with a naturally occurring crosslinking agent(genpin): an in vitro study , Biomaterials 22, 522-533 (2001).
    99. Nishimura SI, Ikeuchi Y, Tokura S. The adsorption of bovine blood protein onto the surface of O-(carboxymethyl) chitin, Carbohydr Res 134, 305-312 (1980).
    100. Basinska T. Adsorption studies of human serum albumin, human -globulin, and human fibrinogen on the surface of P(S/PGL) microsphere, J Biomat Sci Polym Edn 12, 1359-1371(2001).
    101. Chen G, Ito Y, Imanishi Y, Magnami A, Lamponi S, Barbucci R. Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity, Bioconjugate Chem 8, 730-734 (1997).
    102. Lodish H, Berk A, Matsudaia P, Kaiser CA, Scott MP, Krieger M, Darnell J, Zipursky L. Molecular Cell Biology (5th Ed), New York: Freeman WH and Company, 2004, pp. 1-28.
    103. Evans MDM, Steel JG. Polymer surfaces chemistry and novel attachment mechanism in corneal epithelial cells, J Biomed Mater Res 40, 621-630 (1998).
    104. Denuziere A,Ferrier D, Domard A. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspect, Carbohyd Polym 29, 317-323 (1996).
    105. Bacáková L, Filová E, Rypácek F, Svorcik V, Stary V. Cell adhesion on artificial materials for tissue engineering, Physiol Res 53, S35-S45 (2004).
    106. Herndon ME, Stipp CS, Lander AD. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding, Glycobiology 9, 143-155 (1999).
    107. Glading A, Chang P, Lauffenburger DA, Wells A. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway, J Biol Chem 257, 2390-2398 (2000).
    108. Powers CJ, Mcleskey SW, Wellstein A. Fibroblast growth factor, their receptors and signaling, Endoc-Relat Cancer 7, 105-197 (2000).
    109. Vacheethasanee K, Temenoff JS, Higashi JM, Gary A, Anderson JM, Bayston R, Marachant RE. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene, J Biomed Mater Res 42, 425-432 (1998).
    110. Haker G, Dankert J, Feijen J. Growth of uropathogenic Escherichia coli strains as solid surface, J Biomater Sci Polymer Edn 3, 403-418 (1992).
    111. Hsieh YL, Timm DA. Relationship of wettability measurement and initial Staphylococcus aureus adhesion to film and fabrics, J Colloid Interf Sci 123, 275-286 (1998).
    112. Absolon DR, Lamberti FV, Policova Z, Zingg W, Van Oss CJ, Neumann AW. Surface thermodynamics of bacterial adhesion, Appl Environ Microbiol 46, 90-97 (1983).
    113. Bailey JE, Ollis DF. Biochemical Engineering Fundamentals (2nd Ed), New York: McGraw-Hill, 1986, pp. 100-117.
    114. Pirt SJ. The dynamics of microbial processes: a personal review. In Microbial Growth Dynamics, Ed by Poole RK, Bazin MJ, Keevil CW. New York: Oxford University Press, 1990, pp. 1-16.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE