簡易檢索 / 詳目顯示

研究生: 胡嘉翊
Jia-Yi Hu
論文名稱: 用於高速時間交錯類比數位轉換器之時脈校正處理器設計
Design of a Timing Skew Calibration Processer for High-speed Time-interleaved ADCs
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳亮仁
Liang-Jen Chen
陳伯奇
Po-ki Chen
曾偉信
Wei-Hsin Tseng
范振麟
Jen-Lin Fan
鍾勇輝
Yung-Hui Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 110
中文關鍵詞: 類比數位轉換器時脈歪斜延遲鎖定迴路時間交錯
外文關鍵詞: ADCs, Skew, Delay lock loop, Time-interleaved
相關次數: 點閱:260下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文著重於高速時間交錯類比數位轉換器的時脈歪斜校正技術研發。時間交錯類比數位轉換器是由多個單通道類比數位轉換器組成。由於單通道類比數位轉換器受限於CMOS製程技術,當其取樣頻率無法滿足功耗與取樣頻率成線性關係時,則可使用時間交錯的架構,讓取樣率與通道數呈倍數關係。但時間交錯的架構會衍生出通道之間的取樣時間不一致的問題,嚴重地影響著高頻輸入訊號的表現。因此本論文提出了一個新的時脈歪斜校正技術,用以解決通道之間的取樣時間不一致的問題。
相較於其他的時脈歪斜校正技術,本論文所提出的時脈歪斜校正技術,其演算法之硬體實現成本較低。在時脈校正部分,只需額外的數位控制延遲電路。在時脈歪斜偵測部分,則使用加法器來取代乘法器,大量降低在硬體上的複雜度與設計上的困難度。在行為分析模擬(使用MATLAB模擬)中,已驗證本演算法的可行性。因此,我們進一步在硬體實現。利用55奈米低功耗CMOS製程實現了一個八位元、每秒五千兆赫的時間交錯類比數位轉換器,其面積晶片為4.84平方毫米。


This thesis focuses on researching and developing in timing skew calibration of high-speed time-interleaved (TI) ADCs. The operating speed of single-channel ADCs are limited by CMOS process technologies. When the sampling frequency cannot meet the increase in the linear relationship between power consumption and sampling frequencies, the time-interleaved operation can be used to achieve a low power demand. But the time-interleaved architecture derives the problem of inconsistent sampling times between channels, seriously affecting the performance of high-frequency input signals. Therefore, this paper presents a new clock skew correction technique to solve the problem of inconsistent sampling time between channels.
Compared with other clock skew correction schemes, this thesis proposed the clock skew correction technology. The hardware cost of the proposed skew calibration algorithm is lower than prior works. In the clock correction section, only an additional digital control delay circuit is required. In the clock skew detection section, the adder is used instead of the multiplier, which greatly reduces the complexity and design difficulty on the hardware. In the behavioral simulation and analysis (using MATLAB simulation), the feasibility of this algorithm has been verified. As a result, we have implemented an 8-bit 5-GS/s TI-ADC in a 55nm low-power CMOS process with a chip area of 4.84 square millimeters.

論 文 摘 要 i Abstract ii 誌 謝 iv Contents vi List of Figures x List of Table xiv Chapter 1 Introduction 1 1.1 Background Survey 3 1.1.1 Cross Correlation Estimation Scheme 4 1.1.2 Comparison of Autocorrelation Estimation Schemes 7 1.1.3 Delta-Sampling and Interpolation 9 1.2 Motivation 12 1.3 Organization of the Thesis 13 Chapter 2 Errors of Time-Interleaved ADCs 14 2.1 Time-Interleaved ADCs 14 2.2 Static Errors of Time-Interleaved ADCs 17 2.3 Timing Errors of TI ADCs 18 2.3.1 Description of Skew and Jitter 18 2.3.2 ENOB Degradation vs. Skew 20 2.3.3 ENOB Degradation vs. Jitter 21 2.4 Summary 23 Chapter 3 Proposed Skew Calibration Scheme 26 3.1 Basics of the Skew Sensor 26 3.1.1 Introduction of Autocorrelation Function 26 3.1.2 Limitations of the Autocorrelation Function 27 3.1.3 Skew Estimation in TI ADCs 29 3.1.4 Detection Failures of Autocorrelation Function 30 3.1.5 Simple Model of the Autocorrelation Model 37 3.2 Introduction of the Proposed Skew Calibration Scheme 39 3.3 Variance Convergent Procedure 42 3.3.1 Concept of Variance Convergent Procedure 42 3.3.2 Comparison of Timing Space and Convergence Direction 43 3.3.3 Algorithm of Variance Convergent Procedure 45 3.3.4 Steady State of the Variance Convergent Procedure 46 3.4 Reference Convergent Procedure 48 3.4.1 Concept of the Reference Convergent Procedure 48 3.4.2 Algorithm of the RCP Scheme 50 3.5 The Skew Calibration Model 51 3.5.1 Implementation of the Proposed Calibration Algorithm 51 3.5.2 Skew Calibration Processer 53 3.6 Simulation Results of the Proposed Calibration Processor 54 3.6.1 Implementation of the Proposed Calibration Algorithm 54 3.6.2 Calibration with and without the Digital Filter 62 Chapter 4 ADC Architecture and Circuit Implementation 64 4.1 An 8-bit TI ADC Architecture 64 4.2 Delay-Locked Loop (DLL) 66 4.2.1 Operation of the DLL 66 4.2.2 Phase Detector (PD) 68 4.2.3 Charge Pump (CP) 69 4.2.4 Voltage Control Delay Line (VCDL) 72 4.2.5 Phase Offset and Skew 74 4.2.6 Proposed DLL Architecture 75 4.3 Digital Control Delay Line (DCDL) 77 4.3.1 Operation of the DCDL 77 4.3.2 Analysis of the DCDL 78 4.3.3 Proposed DCDL 80 4.4 Digital TUNER 81 4.4.1 Operation of the Digital TUNER 81 4.4.2 Accumulator 84 4.5 Downsample Circuit 86 4.5.1 Operation of the Downsample Circuit 86 4.5.2 Frequency Divider 87 Chapter 5 ADC Layout and Simulation Results 90 5.1 DLL 90 5.2 DCDL 94 5.3 TUNER 96 5.3 Downsample Circuits 98 5.3 8-bit TI ADC 100 Chapter 6 Conclusions and Future Works 105 6.1 Conclusions 105 6.2 Future Works 106 Reference 107 Appendix A 109

[1] W. C. Black and D. A. Hodges, “Time-interleaved converter arrays,” IEEE J. Solid-State Circuits, vol. 15, pp. 1022-1029, Dec. 1980.
[2] M. El-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration,” IEEE J. Solid-State Circuits, vol. 46, pp. 838-847.
[3] M. El-Chammas and B. Murmann, “General analysis on the impact of phase-skew in time-interleaved ADCs,” IEEE Tran. Circuits Syst. I, vol. 56, pp. 902-910,May 2009.
[4] B. Razavi, “Problem of timing mismatch in interleaved ADCs,” in IEEE Custom Integrated Circuits Conference (CICC), 2012, pp. 1–8.
[5] B. Razavi, “Design considerations for interleaved ADCs,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, Aug. 2013.
[6] H. Wei, P. Zhang, B. D. Sahoo, and B. Razavi, “An 8 bit 4 GS/s 120 mW CMOS ADC,” IEEE J. Solid State Circuits, vol. 49, no. 8, pp. 1751–1761, Aug. 2014.
[7] C. Y. Lin, et al.: “A 10 b 2.6 GS/s time-interleaved SAR ADC with background time-skew calibration,” ISSCC Dig. Tech. Papers (2016) 468.
[8] C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques,” IEEE J. Solid-State Circuits, vol. 46, pp. 848-858, April 2011.
[9] A. Haftbaradaran and K.W.Martin, “A sample-time error compensation technique for time-interleaved ADC systems,” Proc. CICC, pp. 341-344, Sept. 2007.
[10] C. H. Law, P. J. Hurst, and S. H. Lewis, “A four-channel timeinterleaved ADC with digital calibration of interchannel timing and memory errors,” IEEE J. Solid-State Circuits, vol. 45, pp. 2091-2103, Oct. 2010.
[11] S. M. Jamal et al, “A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration,” IEEE J. Solid-State Circuits, vol. 37, pp. 1618-1627, Dec. 2002.
[12] J. A. McNeill et al, “Split ADC calibration for all-digital correction of time-interleaved ADC errors,” IEEE Tran. Circuits Syst. II, vol. 56, pp. 344-348,May 2009.
[13] Mile Stojcˇev, et al., “Clock Aligner Based on Delay Lock Loop with Double edge synchroniztion,y inMicroelectroniics Reliability 48, pp. 158-166, 16 April 2007.
[14] Cheng Jia: "A Delay-Locked Loop For Multiple Clock Phases/Delays Generation", A PhD Dissertation, Georgia Institute of Technology December, 2005.
[15] D. J. Foley and M. P. Flynn, “CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator,” IEEE J. Solid-State Circuits, vol. 36, pp. 417–423, Mar. 2001.
[16] J.-S. Lee, M.-S. Keel, S.-I. Lim, and S. Kim, “Charge pump with perfect current matching characteristics in phase-locked loops,” Electron. Lett., vol. 36, pp. 1907–1908, Nov. 2000.
[17] John G. Maneatis, "Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques," IEEE Journal of Solid-State Circuits, vol. 31, NO.11, pp. 1723-1732, November 1996.
[18] J. Jasielski, St. Kuta, W. Machowski, W. Kolodziejski, An Analog Dual Delay Locked Loop Using Coarse and Fine Programmable Delay Elements, Proc. of the 20th Int. Conf. MIXDES, Gdynia, Pl. June 20-23, 2013, pp. 185-190.
[19] K. Ha, L. Kim, "Charge-pump reducing current mismatch in DLLs and PLLs", Proc. IEEE ISCAS, pp. 2221-2224, Jun. 2006.
[20] Hong Yu , Yasuaki Inoue and Yan Han, “A new high-speed low voltage charge pump for PLL applications, ”ASIC, 2005. ASICON 2005. 6th International Conference On, vol.1, pp. 387-390, Oct. 2005.
[21] A. Abidi, “Phase noise and jitter in CMOS ring oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1803–1816, Aug. 2006.
[22] T. Weigandt, “Low-phase-noise low-timing-jitter design techniques for delay cell based VCO’s and frequency synthesizers,” Ph.D. dissertation, Electronics Research Laboratory, University of California at Berkeley, Dec. 1997.
[23] M. Stojcev and G. Jovanovic, “Clock aligner based on delay locked loop with double edge synchronization,” Microelectron. Reliab., vol. 48, no. 1, pp. 158–166, Jan. 2008.

QR CODE