簡易檢索 / 詳目顯示

研究生: 江元壽
Yuan-shou Jiang
論文名稱: 下顎骨植體膺復固定式全口牙橋不同植體佈置之力學分析
Mechanics Analysis of Various Placements of Implant in Implant-supported Full Arch Fixed Prosthesis of Mandible
指導教授: 曾垂拱
Chwei-goong Tseng
口試委員: 石淦生
Kan-shan Shih
趙振綱
Ching-Kong Chao
褚晴暉
Ching-hwei Chue
李維楨
Wei-Chen Lee  
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 155
中文關鍵詞: 有限元素法逆向工程法植體膺復全口牙橋電腦斷層掃描等效應力皮質骨鬆質骨
外文關鍵詞: Implant-supported, Computer Tomography, Fixed Complete Dentures, Von Mises Stress, Cortical Bone, Cancellous Bone, Mandibular Restoration
相關次數: 點閱:425下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的主要目的在於分析探討全口下顎齒槽骨植入不同數量與不同位置的植體,並裝上固定式全口牙橋後,在正常輕度咬合之下,植體附近齒槽骨的應力分佈情形。本研究利用電腦斷層掃描(computer tomography,CT)影像圖結合電腦輔助設計(computer aided design,CAD)系統建構双骨質(皮質骨(cortical bone)與鬆質骨(cancellous bone))的下顎齒槽骨模型。此外,利用逆向工程(reverse engineering,RE)方法與CAD (Rhinoceros 5.1.1-10 & Pro/Engineering 2000i)系統建構出包含前牙區與後牙區的14顆牙齒以及植體與支台模型; 另外,延著每一顆牙齒的齒頸線(cervical line)切除牙根以獲得各顆牙齒的齒冠, 同時利用有限元素(finite element,FE)分析軟體(MSC/PATRAN)將各顆牙齒齒冠連接起來而得到全口牙橋。利用MSC/PATRAN軟體將所有的3D 數位實體模型予以網格化後,以程式中的布林運算(Boolean operation)將各模型予以組合,形成有限元素分析模型,組合後的一階元素個數與節點數分別為1,101,954 與252,693個。此外,依植體植入的數量與植入位置的不同,本研究將所欲分析的一階有限元素模型概分為6個植體系統共27個FE模型。之後,依據27個一階FE模型分析所得之結果,在各植體系統中選出最佳設計的模型(共計6個)進行二階元素的網格化與應力分析工作。二階FE模型元素個數與節點個數分別為1,101,954與1,298,347個。在分析軟體方面,對所有的數學計算來說,MSC/PATRAN與MSC/NASTRAN軟體具有前處理器與後處理器的功能,可評估牙體與下顎齒槽骨的生物力學現象。在負載條件的選擇上,根據上下顎輕度咬合時的咬合力作為本研究的施載條件。在應力評估方面,本研究以等效應力 (von Mises stress,VMS)降伏法則作為評估各模型於受力後,模型內皮質骨、鬆質骨與植體上應力大小的表示方式。 依電腦模擬結果顯示,各FE模型的應力分佈大大地受到植體植入數目與植入位置的影響。在齒槽骨上,與單顆牙齒類似,皮質骨上的最大等效應力 (maximal von Mises stress,MVMS)均集中於皮質骨上緣與植體接觸處。 在四根植體系統方面,F-8模型的MVMS最低;在六根植體系統方面,S-6模型的MVMS最低;在八根植體系統方面,E-3模型的MVMS最低;在十根植體系統方面,T-3模型的MVMS最低;在十二根植體系統方面,各模型的MVMS均低;在十四根植體系統方面,由於所有缺牙處均植入植體,因此在其內各植體處所產生之應力值為最低。此外,在二階FE模型的分析結果顯示,F-8、S-6、E-3、T-3、TW-2及FT-1等6個FE模型分析所得的MVMS值均較一階FE模型之MVMS為高,其值約31 ~ 49 %。若依照文獻資料(即皮質骨的最大極限強度為100 ~ 170 MPa,植體的最大極限強度為550 MPa)及線彈性原理(負載大小增加為5倍,則應力值亦增加5倍),所有的二階FE模型皮質骨與植體上之MVMS均未超過極限強度,而且,隨著植體植入愈多,MVMS有逐漸下降之趨勢。由此可知,植體植入愈多,手術治療後的安全性愈高。


The purpose of this study was to compare the effects of various designs of implants’ placement on stress distribution in bone around the implants supporting one-unit fixed prosthesis. A computer tomography image was redrawn to reconstruct a digital three-dimensional solid model of a mandible including the cortical bone and cancellous bone. Moreover, the reverse engineering method and computer-aided design were employed to construct fourteen pieces of digital three-dimensional solid model of teeth including the anterior and posterior regions as well as implant and abutment. Each tooth was cut along the cervical line to obtain the crown, and all of the crowns were connected by using the MSC/PATRAN software and called the fixed prosthesis. All of the digital three-dimensional solid models were combined and transformed to the FE models by using the MSC/PATRAN software, and they were classified into 27 configurations according to the number and location of the implants. The MSC/PATRAN software was used to develop the FE mesh of each model comprising of 1,101,954 elements with 252,693 nodes. The MSC/NASTRAN software was utilized as pre and post-processor for all mathematical calculations necessary to evaluate dental and mandibular biomechanics. One set of multiple vertical loads was used to simulate the possibility of occlusion status. And the von Mises stress values in the cortical bone, cancellous bone and implants were evaluated. The simulated results indicated that the stress distributions for FE models were largely affected by the number and location of implants. In the bone, similar to the single-tooth case, the von Mises stresses were all concentrated toward the cortical bone around the collar of the implants for FE models. In the 4-implants system, the model F-8 was generated the lowest MVMS in the position L6 of the cortical bone; in the 6-implants system, the model S-6 was generated the lowest MVMS in the position L5 of the cortical bone; in the 8-implants system, the model E-3 was generated the lowest MVMS in the position L5 of the cortical bone; in the 10-implants system, the model T-3 was generated the lowest MVMS in the position L5 of the cortical bone; in the 12-implants system, all of models were generated lower VMS in the cortical bone ; in the 14-implants system, the model FT-1 was generated the lowest MVMS in the position R6 of the cortical bone. From the literatures, the ultimate strength in the cortical bone surrounding the cervical regions of implants and the implant were about 100 and 550 MPa, respectively. If the loadings were increased to 5 times in this study, the MVMS of all materials would be increased to 5 times, too. According to these conditions, the model of F-8, S-6, E-3, T-3, TW-3 and FT-1 would be the best designs for each implant system and suitable to use in the clinical surgery. From the above statements, with more supporting implants, the treatment may be safer.

目 錄 論文摘要…………………………………………………………………...Ⅰ ABSTRACT……………………………………………………………......Ⅳ 目錄………………………………………………………………………...Ⅵ 圖表索引………………………………………………………………...…Ⅷ 第一章 緒 論…………………………………………………………….…1 1-1 前言...…………………………………………………………….…1 1-2 文獻回顧……………………………………………………………2 1-3 研究動機與目的……………………………………………………9 1-4 本文架構…………………………………………………………..11 第二章 人工植牙概述…………………………………………………….13 2-1 牙齒結構與功能…………………………………………………..14 2-2 傳統式假牙………………………………………………………..16 2-3 人工植牙…………………………………………………………..18 2-4 植牙設計的考量…………………………………………………..27 2-5 人工植牙的主要優點……………………………………………..31 第三章 研究設備與方法……………………………..…………………...33 3-1 逆向工程法概述…………………………………………………..33 3-2 有限元素法概述…………………………………………………..36 3-3 有限元素模型建構……………………………………………..…42 3-4 模型分析…………………………………………………………..51 第四章 結果與討論……………………………………………………….67 4-1 四根植體系統……………………………………………………..67 4-2 六根植體系統……………………………………………………..80 4-3 八根植體系統……………………………………………………..89 4-4 十根植體系統……………………………………………………..97 4-5 十二根植體系統…………………………………………………104 4-6 十四根植體系統…………………………………………..……..111 4-7 各植體系統MVMS比較………………………………………...116 第五章 結論與未來研究方向…………………………………………...119 5-1 結論………………………………………………………………119 5-2 未來研究方向……………………………………………………126 參考文獻………………………………………………………………….128 附錄……………………………………………………………………….136 作者簡介………………………………………………………………….154

參考文獻
[1] Chen, CK., Shih, KS., Peng, TK., Yao, JH., Dong, YJ., Pai, L., 1990, “Assessment of periodontal disease in an adult population survey in Taipei city using CPITN and GPM/T indices,” Chinese Journal of Dental, Vol. 9, pp. 67-74.
[2] Bahat, O., Handelsman, M., 1996, “Use of wide implants and double implants in the posterior jaw,” Int J Oral Maxillofac Implants, Vol. 11, pp. 379-386.
[3] Carlsson, L., Andesson, B., Odman, P., Branemark, PI., 1992, “A new Branemark single tooth abutment. Handing and early clinical experience,” Int J Oral Maxillofac Implants, Vol.7, pp. 105-111.
[4] 張文輝,2005,「美齒與科技―人工植牙」,科學發展,394期,第29頁。
[5] Papavasiliou, G., Kamposiora, P., Bayne, SC., Felton, DA., 1996, “Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function,” J Prosthet Dent Vol. 76, pp. 633-640.
[6] Sertgoz, A., Guvener, S., 1996, “Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-supported fixed prosthesis,” J Prosthet Dent, Vol. 76, pp. 165-169.
[7] Stegaroiu, R., Sato, T., Kusakari, H., Miyakawa, O., 1998, “Influence of restoration type on stress distribution in bone around implants: A three-dimensional finite element analysis,” Int J Oral Maxillofac Implants, Vol. 13, pp. 82-90.
[8] Lin, CL., Chang, CH., Cheng, CS., Wang, CH., Lee, HE., 1999, “Automatic finite element mesh generation for maxillary second premolar,” Comput Meth Prog Bio, Vol. 59, pp 187-195.
[9] Ciftci, Y., Canay, S., 2000, “The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations,” Int J Oral Maxillofac Implants, Vol. 15, pp 571-582.
[10] Ciftci, Y., Canay, S., 2001, “Stress distribution on the metal framework of the implant-supported fixed prosthesis using different veneering materials,” Int J Prosthodont, Vol. 14, pp 406-411.
[11] Akca, K., Iplikcioglu, H., 2001, “Evaluation of the effect of the residual bone angulation on implant-supported fxed prosthesis in mandibular posterior edentulism part II: 3-D finite element stress analysis,” Implant Dent, Vol. 10, pp. 238-245.
[12] Akca, K., Iplikcioglu, H., 2001,”Finite element Stress analysis of the influence of staggered versus straight placement of dental Implants,” Int J Oral Maxillofac Implants, Vol. 16, pp. 722-730.
[13] Iplikcioglu, H., Akca, K., 2002, “Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone,” J Dent, Vol. 30, pp. 41-46.
[14] Akca, K., Iplikcioglu, H., 2002, “Finite element stress analysis of the effect of short implant usage in place of cantilever extensions in mandibular posterior edentulism,” J Oral Rehabil, Vol. 29, pp. 350-356.
[15] Mutlu-Sagesen, L., Toroslu, R., Parnas, L., Suca, S., 2001, “A three-dimensional model of the mandible using two-dimensional CT images,” Proc EMBS 2001 Annual Int Cong, pp. 2778-2781.
[16] Sahin, S., Cehreli, MC., Yalcin, E., 2002, “The influence of functional forces on the biomechanics of implant-supported prostheses─A review,” J Dent, Vol. 30, pp. 271-282.
[17] Haraldson, T. and Carlsson, GE., 1977, “Bite force and oral function in patients with osseointegrated oral implants,” Scandinavian Journal of Dental Research, Vol.85, pp. 200-8.
[18] Carr, AB. and Laney, WR., 1987, “Maximum occlusal force levels in patients with osseointegrated oral implant prosthesis and patients with complete dentures,” Int J Oral Maxillofac Implants, Vol. 2, pp. 102-8.
[19] Dalkiz, M., Zor, M., Aykul, H., Toparli, M., Aksoy, S., 2002 “The three-dimensional finite element analysis of fixed bridge restoration supported by the combination of teeth and osseointegrated implants,” Implant Dent, Vol. 11, pp. 293-300.
[20] Lin, CL., Lee, HE., Wang, CH., Chang, KH., 2003, “Integration of CT, CAD system and finite element method to investigate interfacial stresses of resin-bonded prosthesis,” Comput Meth Prog Bio, Vol. 72, pp. 55-64.
[21] Clement, R., Schneider, J., Brambs, HJ., Wunderlich, A., Geiger, M., Sander, FG., 2004, “Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament,” Comput Meth Prog Bio, Vol. 73, pp. 135-144.
[22] Yokoyama, S., Wakabayashi, N., Shiota, M., Ohyama, T., 2004, “The influence of implant location and length on stress distribution for three-unit implant-supported posterior cantilever fixed partial dentures,” J Prosthet Dent, Vol. 91, pp. 234-240.
[23] Himmlova, L., Dostalova, T., Kacovsky, A., Svatava, K., 2004, “Influence of implant length and diameter on stress distribution: A finite element analysis,” J Prosthet Dent, Vol. 91, pp.20-5.
[24] Yokoyama, S., Wakabayashi, N., Shiota, M., Ohyama, T., 2005, ”Stress analysis in edentulous mandibular bone supporting implant-retained 1-piece or multiple superstructures,” Int J Oral Maxillofac Implants, Vol. 20, pp. 78-583.
[25] Maeda, Y., Sogo, M. and Tsutsumi, S., 2005, “Efficacy of a posterior implant support for extra shortened dental arched: a biomechanical model analysis,” J Oral Rehabil, Vol. 32, pp. 656-660.
[26] Sevimay, M., Turban, F., Kilicarslan, M. A., Eskitascioglu, G., 2005, “Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown,” J Prosthet Dent, Vol. 93, pp. 227-34.
[27] Natali, AN., Pavan, PG., Ruggero, AL., 2006, “Evaluation of stress induced in peri-implant bone tissue by misfit in multi-implant prosthesis,” Dent Mater, Vol. 22, pp. 388-395.
[28] Gomes De Oliveira, S., Seraidarian, PI., Landre Jr, J., Oliveira, DD., Cavalcanti, BN., 2006, “Tooth displacement due to occlusal contacts: A three-dimensional finite element study,” J Oral Rehabil Vol. 33, pp. 874-880.
[29] Caglar, A., Aydin, C., Ozen, J., Yilmaz, C., Korkmaz, T., 2006, “Effects of mesiodistal inclination of implants on stress distribution in implant-supported fixed prostheses,” Int J Oral Maxillofac Implants, Vol. 21, pp. 36-44.
[30] Ozen, J., Caglar, A., Beydemir, B., Aydin, C., Dalkiz, M., 2007, “Three-dimensional finite element stress analysis of different core materials in maxillary implant-supported fixed partial dentures,” Quintessence Int Vol. 38, pp. 355-363.
[31] Cranin, AN., 1970, “Oral Implantology,” Springfield, Ill, Thomas.
[32] Kibrick, M., Munir, ZA., Lash, H., Fox, SS., 1975, “The development of a material system for an endosteal tooth implant,” J Oral Implant, Vol. 6, pp. 172-192.
[33] Kibrick, M., Munir, ZA., Lash, H., Fox, SS., 1977, “The development of a material system for an endosteal tooth implant.II. In vitro and in vivo evaluations of a new composite-material design,” J Oral Implant, Vol. 7, pp. 106-123.
[34] Branemark, P. I., Zarb, G. A., Albrektsson, T., 1985, “Tissue-Integrated Prosthetic: Osseointegration in Clinical Dentistry,” Chicago: Quintessence, pp.175-186.
[35] Mild, EE., Bannon, BP., 1981 “Titanium alloys for biomaterial applications–An overview,” Presented at A.S.T.M.-sponsored symposium, Phoenix.
[36] http://www.dr-tony.com.tw/index/health_sub01-101.htm。
[37] http://www.kq88.com/kouzs/lw/A0627-04.htm
[38] Rieger, MR., Fareed, K., Adams, WK., Tanquist, RA., 1989a, “Bone stress distribution for three endosseous implant,” The Journal of Prosthetic Dentistry, Vol. 61, pp. 223-228.
[39] Rieger, MR., Mayberry, M., Brose, MO., 1990b, “Finite element analysis of six endosseous implant,” The Journal of Prosthetic Dentistry, Vol. 63, pp. 671-676.
[40] http://www.hehong.com.tw/myteeth/index.php?t=2&article_id=21。
[41] 呂國富,1999,「人工植牙臨床上生物機械學的考量」,臨床口腔植體學,日毅企業有限公司,第119頁-第125頁。
[42] Kay, CD., David, A., Puleo, RB., 2002, “An Introduction to Tissue-Biomaterial Interactions,” Wiley-Liss, 1-12.
[43] Robbins, Kumar原著,蔡光超、王世晞…等人編譯,1992,「基礎病理學」,藝軒。
[44] Sabiston, J. R., Lyerly 著,梁金銅編譯,1997,「莎氏外科學精要」,藝軒。
[45] 董玉英,1999,「人工種植牙生物力學研究進展」,中國口腔種植學雜誌,Vol. 4, No. 1。
[46] Hench, L. L., Ethridge, E. C., 1982. Biomaterial. A cademic Press. Inc.
[47] Daculsi, G. 1999, “Biotechnology for Calcium Phosphate Bioactive Ceramics in Bone Repair,” The Chinese Society for Materials, Annual Meeting Workshop.
[48] Nie, X., Leyland, A., Matthews, A., 2000, Surf. Coat Technology, pp. 407-414.
[49] Gomez-Vega, J. M., Saiz, E., Tomsia, A. P., Marshall, G. W., Marshall, S. J., 2000, Biomaterials, Vol. 21, pp. 105-111.
[50] Yen, S. K., 2000. Mater. Chem. Phys. Vol. 63, pp. 256-262.
[51] Wu, SY., Lai, YL., Ling, LJ., 2003, “Considerations about bone gualities of jaw bone for dental implant therapy,” Chin J Periodontology, Vol. 8, No. 4, pp. 259-262.
[52] 張仲卿,1999,「逆向工程技術及整合應用」,高立圖書,第1 頁~第15頁。
[53] 周弘裕,1994,「逆向工程系統簡介」, 機械工業雜誌, V.12,第130頁~第136頁。
[54] 賴景義、翁文德,2004,「逆向工程理論與應用」,全華科技圖書股份有限公司,第1~12頁。
[55] 范光照,2002,「逆向工程技術及應用」, 高立圖書,第1-4頁~第1-10頁/第2-10頁~第2-35頁。
[56] Saeed, M., 1999, “Finite element analysis : theory and application with ANSYS,” Prentice Hall, 1-6.
[57] 賴育良、林啟豪、謝忠祐,1997,「ANSYS 電腦輔助工程分析」,儒林圖書,第5頁~第12頁。
[58] 林光隆,「牙齒矯正之三維有限元素模型建立與應力分析」,國立台灣科技大學碩士論文,民國九十三年。
[59] Norman, A., Cranin, MK., Alan S., 1999, Atlas of Oral Implantology. Mosby 2nd, 40-47.
[60] Hans, VO., Joke, D., Jos, VS., Georges, VP., Igmace, N., 2002, “Peri-implant bone tissue strains in case of dehiscence: A finite element study,” Clinical Oral Implants Research Vlo. 13, pp. 327-333.
[61] http:/www.mscsoftware.com/support/library/conf/auc99/p04299.pdf.
[62] Hart, RT., Hennebel,VV., Thongpreda, N., Van Buskirk,W.C. and Anderson, R.C., 1992, ”Modeling the biomechanics of the mandible-a three-dimensional finite element study,” Journal of Biomechanics, vol. 25, pp 287-295,1992。
[63] 吳崑榮,「3D-FEM 植體膺復之非軸向負荷應力分析」,國立台灣科技大學碩士論文,民國九十三年。
[64] Eskitascioglu, G., Usumez, A., Sevimay, M., Soykan, E., Unsal, E., 2004, “The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study,” J Prosthet Dent, Vol. 91, pp. 144-150.
[65] Stegaroiu, R., Kusakari, H., Nishiyama, S., Miyakawa, O., 1998, “Influence of prosthesis material on stresses distribution in bone and implant: a 3-dimensional finite element analysis,” Int J Oral Max Impl, Vol. 13, No.6, pp. 781-790.

QR CODE