簡易檢索 / 詳目顯示

研究生: 吳正宇
Cheng-Yu Wu
論文名稱: 矽鍺基光電晶體與光通訊相關積體電路設計
The Design of SiGe -Based Phototransistor and Integrating Circuits for Optical Communication
指導教授: 劉政光
Cheng-kuang Liu
口試委員: 李三良
San-Liang Lee
周肇基
Chao-chi Chou
徐世祥
Shih-hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 113
中文關鍵詞: 光電晶體轉阻放大器光通訊
外文關鍵詞: phototransistor, transimpedance amplifier, optical communication
相關次數: 點閱:241下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究應用於光通訊系統的相關積體電路,包含發光元件、光接收元件、轉阻放大器、壓控振盪器與資料時脈回復電路。
第一部份探討光電晶體發光與檢光的設計,使用的是台積電0.35μm SiGe 3P3M製程,採用不同的射極面積元件,研究不同的面積下對發光與檢光特性的影響。
第二部份為差動式輸出轉阻放大器的設計,使用的是台積電0.35μm SiGe 3P3M製程,功率消耗在3.3V供應電壓下為34mV,在光檢測器輸入電容250fF時-3dB頻寬為2.44GHz。
第三部份為2.5GHz低功率與低雜訊的壓控振盪器設計,採用台積電0.18μm 1P6M COMS製程來實現,此壓控振盪器可調範圍為220MHz,偏移載波1MHz的相位雜訊為-119dBc/Hz,功率消耗為4.6mW。
最後模擬應用於光接收器之鎖相迴路式時脈資料回復電路,包含相位偵測器、充電泵、低通濾波器、壓控振盪器,其傳輸速率為2.5Gb/s。


This thesis studies integrated circuits that are related to the system of optical communication. It includes light-emitting device, light-receiving device, transimpedance amplifier(TIA), voltage-controllator oscillator (VCO), and clock and data recovery(CDR) circuit.

In the first part, the design of optical receving and light emitting devices are presented using the process of TSMC’s 0.35μm SiGe 3P3M. The effects of emitter area on the light-emitting and light-receving characteristics are presented.
In the second part, the design of TIA is presented using the process of TSMC’s 0.35μm SiGe 3P3M. The power consumption is 34mW from a 3.3V voltage supply. The -3dB bandwidth is 2.44GHz for a photodiode input capacitance of 0.25pF.

In part three, the design of 2.5-GHz low-power-consumption and low-noise VCO is studied using TSMC the process of 0.18μm 1P6M CMOS. It has a tunable frequency of 220MHz and a phase noise of -119dBc/Hz. The power consumption is 4.6mW, under 1.2V voltage supply.

Finally, a simulation study is made of the PLL-based CDR. It includes a phase detector, a charge-pump, a low-pass filter, and a VCO. The transmission rate is 2.5Gb/s.

中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 第一章 緒論 1 1.1 前言......................................................................................1 1.2 研究動機......................................................................................2 1.3 內容簡介......................................................................................3 第二章 光通訊相關電路基本介紹..................................................5 2.1 光通訊電路接收端架構簡介......................................................5 2.1.1 光偵測器..........................................................................6 2.1.2 轉阻放大器......................................................................6 2.1.3 限幅放大器......................................................................7 2.1.4 時脈與資料回復電路......................................................8 2.2 電路設計流程與量測考量..........................................................9 2.2.1 設計流程..........................................................................9 2.2.2 量測考量........................................................................11 2.3 眼圖與雜訊分析........................................................................12 2.3.1 眼圖形成........................................................................12 2.3.2 抖動的來源....................................................................12 2.3.3 抖動的種類....................................................................13 2.3.4 眼圖分析........................................................................14 第三章 矽鍺基光電晶體發光與檢光設計..................................16 3.1 光電晶體介紹............................................................................16 3.2 發光機制與原理........................................................................18 3.2.1 半導體發光材料特性....................................................18 3.2.2 復合機制研究與分析....................................................19 3.3 電晶體檢光原理........................................................................21 3.3.1 光檢測原理....................................................................21 3.3.2 光電晶體檢光作用原理................................................22 3.4 矽鍺基光電晶體電路設計........................................................25 3.4.1 光電晶體設計................................................................25 3.4.2 光電晶體直流分析........................................................27 3.4.3 光電晶體發光量測........................................................32 3.4.4 光電晶體檢光量測........................................................36 3.5 討論............................................................................................39 第四章 差動式輸出轉阻放大器設計與量測.............................42 4.1 轉阻放大器簡介........................................................................42 4.1.1 開迴路轉阻放大器........................................................44 4.1.2 回授型轉阻放大器........................................................45 4.2 差動式輸出轉阻放大器架構設計............................................47 4.2.1 Regulated Cascode電路架構介紹................................48 4.2.2 Inductive peaking技巧介紹.......................................49 4.2.3 主動式電感介紹............................................................51 4.2.4 差動式輸出轉阻放大器電路模擬................................53 4.3差動式輸出轉阻放大器量測與討論.........................................55 4.3.1差動式輸出轉阻放大器量測方法與結果......................55 4.3.2差動式輸出轉阻放大器討論與比較..............................57 第五章 低功耗與低雜訊壓控振盪器設計與量測....................61 5.1 振盪器簡介...............................................................................61 5.2 振盪器基本理論........................................................................62 5.2.1 LC振盪器.........................................................................63 5.2.2 環形振盪器....................................................................64 5.3 低功耗與低雜訊壓控振盪器架構設計....................................66 5.3.1 交叉耦合對....................................................................66 5.3.2 低功耗與低雜訊壓控振盪器設計................................67 5.3.3 低功耗與低雜訊壓控振盪器電路模擬........................69 5.4 低功耗與低雜訊壓控振盪器量測與討論................................72 5.4.1低功耗與低雜訊壓控振盪器量測方法與結果..............72 5.4.2低功耗與低雜訊壓控振盪器討論與比較......................76 第六章 時脈與資料回復電路模擬...............................................78 6.1 時脈資料回復電路系統簡介....................................................78 6.2 隨機二進位資料產生器............................................................79 6.2.1 不歸零式資料介紹........................................................79 6.2.2 隨機二進位資料產生器................................................79 6.3 時脈資料回復電路研究.........................................................82 6.3.1 時脈資料回復電路系統架構........................................82 6.3.2 相位偵測器....................................................................82 6.3.3 充電泵............................................................................86 6.3.4 低通濾波器....................................................................87 6.3.5 振盪器............................................................................88 6.4時脈資料回復電路模擬與討論..................................................89 6.4.1時脈資料回復電路模擬..................................................89 6.4.2時脈資料回復電路討論..................................................92 第七章結論...........................................................................................93 7.1 總結...........................................................................................93 7.2 未來展望...................................................................................94 參考文獻 95 作者簡介 99

[1] 鄭明哲,光通信,全華科技圖書股份有限公司, 1985年3月.
[2] J.C.Palais, Fiber Optic Communications, chap 7、11, 台北市, 東華書局, 民國八十九年.
[3] 趙福光, 光電積體電路現狀及未來展望, 光電資訊, 第6期 pp.43-50, June.1990.
[4] 姜向中, 短距離光互連和高速銅互連應用現狀分析, 電子工程專輯(http://www.eettaiwan.com/), Apr.2003.
[5] 林清富, 矽半導體發光的可能性, 光訊第93期, pp.11-17, Dec. 2001.
[6] B.Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003.
[7] 安毓英, 光學感測與射量, 五南出版, 民國九十三年.
[8] B.Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, 2003.
[9] 混合微控制器與類比應用時對電源、接地和雜訊的處理, 電子工程專輯(http://www.eettaiwan.com/), 2008.
[10] D. Dennis, Fiber Optic Test and Measurement, Prentice Hall, 1998.
[11] 李瑜、鄭乃禎、陳繼展, 高效能通訊系統之位元錯誤率測式策
略, 系統晶片, 第7期, pp.94-107, Nov.2007.
[12] 湯俊明, 0.35μm CMOS 1.25Gbps 光纖通訊用後制放大器最佳
化設計, 碩士論文, 國立清華大學, 2002.

[13] 蔡亭林, 矽鍺光電晶體與砷化鎵光電晶體之設計與特性分析,
碩士論文, 國立中央大學, 2004
[14] 蘇亭偉, 奈米結構金氧矽發光二極體之特性研究, 碩士論文,
國立台灣大學, 2002.
[15] S.M.Sze, Physics of Semiconductor Devices, Wiley and Sons,
2007.
[16] K. Lee,M. Shur,T. A. Fjeldly,T. Ytterdal, Semiconductor
Devics Modeling for VLSI, Prentice-Hall International Editions, 1993.
[17] M. Sze,D. J. Coleman,A. Loya,“Current Transport in Metal-Semiconductor-Metal (MSM) structures”,Solid-State Electronics, vol.14, pp. 1209-1218, 1971.
[18] 繆家鼎、徐文娟、牟同升, 光電技術, 五南出版, 2005年4月
[19] S.M.Frimel,K.P.Roenkera,“Gummel–Poon model for Npn
heterojunction bipolar phototransistors”,J.Appl.Phys.
vol.82, no.7, October 1997
[20] 劉權德, 光電用轉阻放大器研製, 碩士論文, 國立清華大學,
2001.
[21] 呂啟銘, 10Gb/s 光纖通訊系統接收端電路模擬實作與量測,
碩士論文, 國立中央大學, 2005.
[22] S.-H.Kim , C.-U.Kam , J.-H.Lee,“Design of 2.5Gb/s transimpedance amplifier using CMOS technologies”, IEEE ICACT , pp.1825-1828, Feb. 2007.
[23] A.Hajimiri,T.Lee,“Design issues in CMOS differential LC
oscillators”, IEEE J.Solid-State Circuits, vol.34, pp.716-724
1999.
[24] A.Hajimiri,T.Lee,“Oscillator phase noise: a tutorial”,
IEEE J. Solid-State Circuits, vol.35, no.3, pp.326-336,
2000.
[25] T.Y.Lin,Y.Z.Juang,H.Y.Wang,“A low power 2.2-2.6GHz CMOS
VCO with a symmetrical spiral inductor”IEEE International Symposium on Circuits and Systems, vol.1, pp.641-644, 2003.
[26] H.Kim,S. Ryu,Y. Chung,Ji.Choi,B.Kim, “A low phase-noise
CMOS VCO with harmonic tuned LC tank”, IEEE Transactions on Microwave Theory and Techniques, vol.54, no.7,
pp.2917-2924, 2006.
[27] L. Jia, J. G. Ma, K. S. Yeo, and M. A. Do, “A novel methodology for the design of LC tank VCO with low phase noise”,IEEE International Symposium on Circuits and Systems, vol. 1, pp. 376-379, 2005
[28] Y. H. Chuang, S. L. Jang, S. H. Lee, R. H. Yen, and J. J. Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong”, IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, 2007
[29] 張璋平, 鎖相迴路架構的頻率合成器與資料回復器設計, 碩士
文, 私立大同大學, 2002.
[30] J.Lee,B.Razavi,“A 40Gb/s clock and data recovery circuit
in 0.18μm CMOS Technology”, ISSCC, 2003.
[31] J. Lee, “Analysis and modeling of bang-bang clock and data recovery circuits”, IEEE J.Solid-State Circuits, vol.39,no.9, pp.1571-1580, Sep.2004.
[32] B.Razavi,“Challenges in the Design of high-speed clock and data recovery circuits”,IEEE Communications Magazine, pp.94-101, Aug.2002.
[33] M.Alioto,R.Mita, “Design of high-speed power-efficient MOS current-mode logic frequency dividers”, IEEE Transactions on Circuits and Systems, vol.53, no.11, 2006
[34] K.C.Chuang, A design of phase-locked loop for the
application in optical transmitter, Master Thesis, Nation
Taiwan University of Science and Technology, 2006.

QR CODE