簡易檢索 / 詳目顯示

研究生: HIEU PHU PHAM
HIEU PHU PHAM
論文名稱: 基於氮化鎵元件1MHz全橋相移轉換器
GaN Based 1MHz Phase Shifted Full Bridge Converter
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
劉益華
Yi-Hua Liu
呂錦山
Ching-Shan Leu
楊宗銘
Chung-Ming Young
賴炎生
Jen-Shin Lai
陳耀銘
Yaow-Ming Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 110
中文關鍵詞: 全橋相移零電壓切換數百萬赫茲操作頻率
外文關鍵詞: Phase shifted full bridge, zero voltage switching, MHertz switching frequencies
相關次數: 點閱:303下載:70
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對於資料中心和通訊方面的應用來說,電源供應器的功率從幾百瓦特到幾千
瓦特的應用都有,其中電源供應器由前級的功率因數修正器和後級的直流直流-轉
換器所組成。 例如對於通訊方面的應用來說,電源供應器前級的功率因數修正器的
輸入電壓通常為 360V 到 400V 之間,後級直流-直流轉換器的輸出電壓為 48V 到
60V 之間。對於高功率的應用來說,全橋相移拓樸經常被使用在大電流輸出的條件
下,但是該拓樸仍然有達成零電壓切換的負載範圍過小以及輸出端整流元件電壓應
力過高等缺點,這些缺點會限制該電路無法操作在數百萬赫茲的切換頻率。本篇論
文提出了使用兩個鉗位二極體的 Tr-lead 型全橋相移拓樸,解決上述提到無法操作
在數百萬赫茲操作頻率的問題。由於整流二極體的寄生電容與反向恢復特性會嚴重
影響轉換器操作在高頻下的表現,本論文會針對上述的狀況和傳統全橋相移拓樸與
Tr-lead 型全橋相移拓樸進行細節分析。本論文提出的解決反向恢復特性的方法是
使用增強型寬能隙元件氮化鎵 取代傳統的矽元件。最後本論文實做了一操作頻率
為 1MHz、輸出功率為 480W 的 Tr-lead 型全橋相移電路,並且由實驗結果可以得
到,該電路可以在寬負載範圍下達到零電壓切換和操作在數百萬赫茲操作頻率。此
電路在滿載的時候達到最高轉換效率 93%


The Power Supply Unit (PSU) for data center and telecommunication application
typically handles from few hundreds Watt to few kilo Watts, that is composed of Power
Factor Corrector (PFC) stage and frond-end DC-DC stage. For application such as
telecommunication, the output voltage range is typically regulated at 48-60V from the 360- 400V input voltage source of PFC circuit. For high power application, the full bridge topologies, i.e. phase shifted full bridge (PSFB) converters are mostly used due to ability of carrying high current. The conventional PSFB converters have the drawbacks of narrow zero voltage switching (ZVS) operating range and high voltage stresses on the output rectifiers, which limit the operating of converter in MHertz switching frequencies. In this dissertation, the Tr-lead type PSFB converter employing two clamping diodes to overcome abovementioned issues is presented. The parasitic capacitor and reverse recovery characteristics of the output rectifiers that severely effect the performance of converter in high switching frequencies are discussed, together with the detailed analysis of both conventional and proposed converter. The solution of using enhanced mode Gallium Nitride wide band gap devices is introduced in order to overcome the drawback of Silicon based devices. Finally, a 480W 1MHz switching frequency prototype is built up and tested in laboratory. The experimental results show the ZVS achievement of switches in the wide range of load conditions, featuring the capability of operating in MHertz frequencies of this converter. The achieved peak efficiency of converter is up to 93% at full load condition

TABLE OF CONTENTS 摘要...................................................................................................................................... i Abstract.............................................................................................................................. ii Acknowledgement............................................................................................................ iii Table of Contents ............................................................................................................ iv List of Figures................................................................................................................... vi List of Tables ................................................................................................................... xii Chapter 1. Introduction.................................................................................................... 1 1.1. Background and motivation ............................................................................. 1 1.2. Organization of the dissertation ....................................................................... 5 Chapter 2. Phase shifted full bridge DC-DC converter................................................. 7 2.1. ZVS phase shifted full bridge DC-DC topology.............................................. 7 2.2. The utilized switch gate PWM signals............................................................. 9 2.3. Operating principle of conventional ZVS phase shifted full bridge DC-DC converter........................................................................................................ 11 2.4. ZVS condition of conventional phase shifted full bridge DC-DC converter. 23 2.5. Input to output DC voltage gain..................................................................... 25 2.6. Voltage oscillation on the output rectifier...................................................... 25 Chapter 3. PSFB DC-DC converter with clamping diodes ......................................... 33 3.1. Analysis of PSFB DC-DC converter with clamping diode: Tr-lead and Tr-lag configuration ................................................................................................. 35v 3.2. Comparisons of Tr-lead type, Tr-lag type and conventional PSFB DC-DC converter........................................................................................................ 50 3.3. Reverse recovery issue of output rectifier ..................................................... 57 3.4. Characteristics of GaN devices versus Si and SiC devices............................ 62 Chapter 4. Design consideration for Tr-lead type PSFB DC-DC converter ............. 66 4.1. Design procedure of Tr-lead type PSFB DC-DC converter with clamping diode .......................................................................................................... 66 4.2. Design example of 480W 1MHz switching prototype................................... 72 Chapter 5. Simulated and experimental results........................................................... 75 Chapter 6. Conclusions and future works .................................................................... 89 References ........................................................................................................................90

[1] J. W. Kolar, U. Drofenik, J. Biela, M. L. Heldwein, H. Ertl, T. Friedli, and S. D.
Round, “PWM Converter Power Density Barriers,” in Proceedings of the 4th Power
Conversion Conference (PCC), April 2007, pp. 9–29.
[2] J. W. Kolar, J. Biela, and U. Badstuebner, “Impact of power density maximization
on efficiency of DC-DC converter systems,” in Proceedings of the 7th International
Conference on Power Electronics (ICPE), October 2007, pp. 23–32.
[3] K. G. Brill, “Moore’s law economic meltdown,” June 2008. [Online]. Available:
www.forbes.com
[4] J. W. Kolar, J. Biela, S. Waffler, T. Friedli, and U. Badstuebner, “Performance
trends and limitations of power electronic systems,” in 6th International Conference
on Integrated Power Electronics Systems, March 2010, pp. 17–36.
[5] Simonetti, F. Viera, and D. Sousa, “Modelling of the high-power-factor
discontinuous boost rectifiers,” IEEE Trans. Ind. Appl., vol. 19, no. 4, pp. 586-559,
Jul. 1983.
[6] M. Kocher and R.L. Steigerwald, “An AC-to-DC Converter with High Quality
Input Waveforms,” IEEE Trans. Ind. Appl., vol. 19, no. 4, pp. 586-599, Jul. 1983.
[7] A. Mitwalli, S. Leeb, G. Verghese, and V. Thottuvelil, “An adaptive digital
controller for a unity power factor converter,” IEEE Trans. Power Electron., vol.
11, no. 2, pp. 374-382, Mar. 1996.

QR CODE