簡易檢索 / 詳目顯示

研究生: 熊漢興
Han-Hsing Hsiung
論文名稱: 負離子釋放高分子材料製備與性能研究
Preparation and Investigation of Negative Air Ions Releasing Properties of Polymer Materials
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 陳幹男
none
陳宏恩
none
賴顯松
none
許應舉
none
吳進三
none
黃繼遠
none
黃國賢
none
洪伯達
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 112
中文關鍵詞: 電氣石/竹炭複方粉體空氣負離子聚丙烯
外文關鍵詞: tourmaline/bamboo charcoal, negative air ions, PP
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要使用EPMD/PP熱塑性彈性體與PP為高分子製成具釋放負離子功能之高分子。 其中以混煉加工方法將微納米級電氣石粉末加入純PP塑料或經製備EPDM/PP動態硫化橡膠,製作具有釋放負離子效果之高分子材料。 論文中著重於不同加工材料、電氣石含量及經交聯EPDM分散後EPDM/PP高分子對所製備樣品在不同溫度與撞擊條件下負離子釋放效果影響進行研究。 結果發現空氣負離子分析中,PP與EPDM樣品由混煉法加入電氣石含量5%時,負離子施放量均比其它比例下高,當測試溫度為70℃時, 其負離子施放量也均比其它溫度高,於拍打條件下的負離子施放量也比未拍打條件下來得好。 而其中條件為EPDM/PP熱塑性彈性體均比PP樣品負離子施放量來得高。 事實上,經此最適化加工條件所製備EPDM/PP之薄膜樣品於70℃拍打條件下,空氣負離子施放量已高達500個負離子/cc。
另含電氣石EPDM/PP高分子材料製備的初步研究表明,電氣石粉體能有效釋放負離子與適合人體皮膚吸收之遠紅外線。 經熔融共混加工製得含有電氣石粉體之EPDM/PP薄膜樣品具有一定的負離子釋放功能。 值得注意的是,電氣石粉體含量、測試溫度、樣品受壓狀況等因素對EPDM/PP薄膜樣品的負離子釋放性能都有明顯的影響。
依據上述研究結果,含電氣石粉體EPDM/PP薄膜樣品在70℃、拍打條件下具有最好的負離子釋放效果。造成這種有趣之負離子釋放現象,可能是因為電氣石晶體本身具有之顯著壓電和熱電效應。 另可能隨EPDM/PP薄膜樣品內電氣石之含量增加,進而導致電氣石粉體在樣品內部產生”應力集中”的效應明顯增加,所以使得其抗張強力與斷裂伸長率隨其內電氣石含量之增加而明顯下降。
另本論文亦研究添加負離子配方粉體的PP塑料或EPDM/PP熱塑性彈性體樹脂在不同溫度之靜態和拍打測試條件下的負離子釋放性質。實驗結果表明,在最適化8/2電氣石/竹炭比例下,當粉體含量為5 wt%時,電氣石/竹炭PP和EPDM/PP薄膜樣品在各種測試條件下,平均空氣負離子的釋放濃度均達到最大值。
另一方面,值得注意的是:電氣石/竹炭添加於PP或EPDM/PP薄膜樣品於拍打的測試條件下所測得的平均空氣負離子的釋放濃度均高於在靜置測試條件下所測得的數值。如,5 wt%含量的電氣石/竹炭PP薄膜樣品在90℃、拍打狀態下釋放的負離子為630個/cc,這個結果是純PP薄膜樣品在25℃、靜置狀態下釋放負離子的21倍。 而5 wt%的電氣石/竹炭EPDM/PP薄膜樣品在90℃、拍打狀態下釋放的負離子為810個/cc,這是純PP薄膜樣品在25℃、靜置狀態下釋放負離子的27倍。 進一步研究發現電氣石竹炭粉體中變化竹炭顆粒尺寸,可明顯提升/降低5 wt%的電氣石/竹炭EPDM/PP薄膜樣品在各測試條件下之平均空氣負離子的釋放濃度。 實驗結果表明,在最適化8/2電氣石/竹炭比例下,就竹炭粒徑400、450、800(目)的平均空氣負離子的釋放濃度分析,當竹炭顆粒尺寸由原來的450目減小為800目時,電氣石/竹炭EPDM/PP薄膜樣品於90℃拍打條件下的平均空氣負離子的釋放濃度已高達1200個負離子/cc。
為研究上述這些有趣的負離子釋放性質,負離子粉體溶液的電導率、粉體比表面積、元素分析及薄膜樣品的拉伸性能與表面形態分析都在本文中有具體的討論。


This thesis uses thermoplastic elastomer of EPMD/PP and PP to be made of polymer and had which release the anion function mainly. Among them join grade of tourmalines powder of micrometer pure PP plastics in order to compounding the processing method of the powder or prepared the dynamic vulcanized rubber of EPDM/PP, making has polymer material which releases the anion result. Focus on different compounding metals in the thesis, it influences research that the content of tourmaline and polymer of EPDM/PP after handing in and uniting EPDM to disperse release the result to the anions under different temperature and condition of striking of samples prepared.
While finding the air anion analysing finally, PP and EPDM/PP sample are compounded and put into 5% of content of tourmaline, the anion is higher than under other proportion in discharging amount, when test temperature as 70 degrees Centigrade, its anion is higher than other temperature too in discharging amount, anion who discharge under patting condition too than pat terms get off kind. And no matter compound the thermoplastic elastomer of EPDM/PP made the powder law to come higher than the discharging amount of sample anion of PP. In fact, optimization of process the membrane sample of EPDM/PP that the condition prepares under the circumstances that 70 degrees Centigrade pats the condition through this, the discharging amount of air anion has already been up to 500 (ions / cc).
The main purpose of this thesis is to investigate the releasing properties of negative air ions of the tourmaline contained polypropylene (PP) and ethylene propylene diene terpolymer / polypropylene thermoplastic elastomers (EPDM/PP) composites under varying testing conditions. When the weight ratio of tourmaline to bamboo charcoal powders present in the tourmaline/bamboo charcoal compouns reaches 8:2. It is interesting to note that the average concentrations of negative air ions (Cion-) emitted from PP/tourmaline/bamboo charcoal and PP/EPDM/tourmaline/bamboo charcoal film specimens tested at varying conditions reach a maximum value as the tourmaline/bamboo charcoal contents present in PP and EPDM/PP film specimens approach the 5wt% optimum value. A beneficial temperature effect on conductivity and Cion- values of the tourmaline/bamboo charcoal contained water solutions and tourmaline/bamboo charcoal contained PP and EPDM/PP specimens were found, respectively. Moreover, all Cion- values of PP/tourmaline/bamboo charcoal and EPDM/PP/tourmaline/bamboo charcoal film specimens tested at dynamic impact mode are significantly higher than those of the corresponding specimens tested at static mode but the same temperature. The Cion- value of the P-TB450m-5 film specimens tested at 90℃ and dynamic impact mode reaches about 630 particles/cc, which is about 21 times more than that of pure PP film specimen tested at 25℃ and static mode. In contrast, the Cion- value of the E/P-TB450m-5 film specimens tested at 90℃ and dynamic impact mode reaches about 810 particles/cc, which is about 27 times more than that of pure PP film specimen tested at 25℃ and static mode.
  Further investigation found that the emitting properties of negative air ions of tourmaline powders can be improved by Change various size of bamboo charcoal. The Cion- value of tourmaline/bamboo charcoal contained EPDM/PP film specimens can reach a maximum value, after Cion- value of the bamboo charcoal size 400, 450, 800 (mesh) is analysed when tourmaline/bamboo charcoal having size 800mesh bamboo charcoal at 5 wt%. In fact, the Cion- value of the E/P-TB800m-5 film specimens tested at 90℃ and dynamic impact mode reaches about 1200 particles/cc, which is about 40 times more than that of pure PP film specimen tested at 25℃ and static mode.
In order to understand these interesting negative air ion properties of tourmaline/bamboo charcoal contained film specimens, energy dispersive X-rays analysis of the tourmaline/bamboo charcoal and SEM morphology analysis of the PP / tourmaline/ bamboo charcoal and EPDM/PP/tourmaline/bamboo charcoal film specimens were performed. Possible reasons account for the interesting negative air ion properties of the PP/tourmaline/bamboo charcoal and EPDM/PP/tourmaline/bamboo charcoal film specimens are proposed.

論文摘要 Ⅰ ABSTRACT Ⅳ 誌謝 Ⅶ 目錄 Ⅷ 圖表索引 Ⅹ 第一章 前言………………………………………………………...……1 第二章 理論及文獻回顧…………………………………………...……3 2.1 背景………………………………………………..............................3 2.2 EPDM與PP熱塑性塑膠之混摻應用………………..........................8 2.3乙烯丙烯橡膠 …………………………………………………..….15 2.3.1 二元乙丙橡膠...............................................................................15 2.3.2 三元乙丙橡膠...............................................................................15 2.4 EPM或EPDM與熱塑性塑膠之混摻應用...................18 2.5 動態加硫............................................................................................20 2.6 交聯劑種類.........................................................................................21 2.6.1 含硫磺體系....................................................................................22 2.6.2 過氧化物體系................................................................................25 2.6.3 酚醛樹酯的硫化體系....................................................................27 2.7 油劑及碳黑.........................................................................................31 2.8 電氣石……………………………………………………….............34 2.9 竹炭 ...................................................................................................38 2.10 空氣離子...........................................................................................39 2.10.1 空氣離子種類及其產生機制…………………………................39 2.10.2 關於發生條件…………………………………………….….…. 41 2.10.3 人工獲得空氣負離子的方法........................................................42 2.10.4 空氣負離子的消失機制 ..............................................................44 第三章 實 驗…………………………………………..……………….45 3.1 主要原料…………………………………………..…………….….45 3.2 主要實驗設備及儀器………………………….…..……………….46 3. 3 實驗方法…………………………………………..……………….47 3.3.1粉體形態與成份分析…………………………..……………...….47 3.3.2竹炭的比表面積分析………...…………………..……………….48 3.3.3粉體溶液電導率分析……………………………….…………….49 3.3.4 EPDM/PP母粒的製備過程……………………………………….50 3.3.5負離子樣品的製備過程…………………………………….…….52 3.3.6負離子薄膜樣品中的粉體形態與成份分析……….…………….54 3.3.7空氣負離子釋放性能的測量…………………..……………...….55 3.3.7.1負離子測定原理………………………………..……………….56 3.3.8拉伸性能分析……………………………………….…………….60 第四章 結果與討論 …………………..………………………………...61 4.1 負離子複方粉體的最佳配方的研究 …………………..……..…..61 4.2 複方粉體的表面形態與元素分析…………………..…………….68 4.3 粉體溶液的電導率分析…………………..……………………….77 4.4 負離子薄膜樣品中形態與表面元素分析 …………………..…….84 4.5 負離子薄膜樣品的空氣負離子釋放性能………………………...92 4.6 含複方粉體薄膜样品的拉伸性能分析…………………………...99 第五章 結 論…………………..……………………….…………….103 參考文獻….……………..…………………………………………….108 作者簡介…………………..………………………………….……….112

1. 林忠寧, 空氣負離子在衛生保健中的作用, 生態科學,18 ,2 ,87~90(1999).
2. 鐘林生, 森林旅遊資源評價中的空氣負離子研究, 生態學雜誌, 17, 6, 56~60(1998)
3. Hideo Nakane, Osamu Asami, Yukio Yamada, Hideki Ohira, “Effect of negative air ions on computer operation, anxiety and salivary chromogranin A-like immunoreactivity”, Vol.46, pp.85~89(2002)
4. 堀口 昇, 負離子的神奇療效, 第166~181頁, 台北, 世茂出版社(2001).
5. Fukushima and Fumio, U.S. Patent 6,494,934 (2002).
6. Kawajiri, Yoshitaka, Shintaku, Mitsuo, U.S. Patent 6,449,990 (2002).
7. Van Dick and Robert C., U.S. Patent 5,562,597(1996).
8. Sasaki, Keiji, U. S. Patent 6,316,102(2001).
9. 高潔、李青山、周可富、楊寶臣、齊鳳林、 殷永傳, 負離子添加劑在紡織品中的應用生態科學, 紡織科學研究, 第一期, 第27~30頁 (2002).
10. Matsumoto, Mitsugu, Shimizu, Akira, Nishijima and Seiichi, U.S. Patent 6,482,514 (2002).
11. Tatsumi and Hiroaki, U. S. Patent 6,509,294 (2003).
12. Omar, Basil Arthur, Woodgate, Graham John, Ezra and David, U.
S. Patent 6,449,090 (2002).
13. 八藤 真, 活用負離子健康法, 台北, 世茂出版社 (2002).
14. 邱信雄, 日本機能性負離子紡織品之開發近況--健康.舒適性
紡織品之開發, 紡織速報, 119期, 第46-53頁 (2002).
15. 陳鈺和, 負離子添加劑在塗料中的應用, 塗料與塗裝技術, 96期, 第40~43頁 (2003).
16. 姚鼎山,環保與健康新材料-托瑪琳, 第62頁, 北京, 化學工業出版社 (2001).
17. F. Ide and A. Hasegawa, J. Appl. Polym. Sci., 18, 963 (1974).
18. B. N. Epstein, U.S. Patent 4, 174, 358 (1979).
19. M. I. Kahan, W. H. Martin and C. K. Roseenbaum, U.S. Patent 3, 676, 400 (1982).
20. S. Y. Hobbs, R. C. Bopp and V. H. Watkins, Polym. Eng. Sci., 23, 380 (1983).
21. L. D'Orazio, C. Mancarella and E. Martuscelli, J. Mater. Sci, 23, 161(1988).
22. K. Mashita, T. Fujii and T. Omae, U.S. Patent, 4, 780, 505 (1988).
23. F. Ide and A. Hasegawa, J. Appl. Polym. Sci., 18, 963 (1974).
24. J. Geroge, K. T. Varughese, N. R. Neelakantan, S. Thomas, J. Polym. Sci. Polym. Phys. Ed., 35, 2309(1997).
25. U. Sundararaj, C. W. Macosko, Macromolecules, 28, 2647(1995).
26. 姚鼎山,環保與健康新材料-托瑪琳, 第6~8頁, 北京, 化學工業出版社 (2001).
27. Kubo and Tetsujiro, U.S. Patent 5,770,089(1998).
28. 姚鼎山,環保與健康新材料-托瑪琳, 第12~13頁, 北京, 中國紡織大學出版社 (2002).
29. Lang S B. The history of pyroelectricity: from ancient Greece to space missions[J]. Ferroelectrics, 1999,230: 99-108.
30. 姚鼎山,環保與健康新材料-托瑪琳, 第42頁, 北京, 化學工業出版社 (2001).
31. 楊如增等,天然黑色電氣石熱釋電特性的研究,寶石和寶石學雜誌,2000.
32. 姚鼎山,環保與健康新材料-托瑪琳, 第76~140頁, 北京, 化學工業出版社 (2001).
33. Hirata, Yoshihiro, Ueda, Yoshio, Takase and Hiroaki, U.S. Patent 6,833,145 (2004).
34. Kim and Hyun Jong, U.S. Patent 6,783,664 (2004).
35. Kawajiri, Yoshitaka, Shintaku and Mitsuo, U.S. Patent 6,449,990 (2002).
36. Y. Hamada, F. Teraoka, T. Matsumoto, A. Madachi, F. Toki, E. Uda, R. Hase, J. Takahashi and N. Matsuur, Effects of far infrared ray on Hela cells and WI-38 cells, International Congress Series 1,255 (2003).
37. 山野井昇, 負離子活化生命, 第55~56頁, 台北, 元氣齋出版社 (2003).
38. 邵千鈞等,竹炭導電率及高導電率逐探製備工藝研究,林產化學與工業,第22卷,第2期,第54~56頁(2002) .
39. 鄭水林等,超細電氣石粉體的製備和負離子釋放性能研究,礦冶,第13卷,第4期,第50~53頁(2004) .
40. Giannelis, E. P. Adv Mater 1996, 8, 29.
41. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Polym Sci Part A: Polym Chem 1993, 31, 1755.
42. Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem Mater 1993, 5,1694.
43. S. M. Soo, US Patent 0,014,716 (2002).
44. J. Konishi, US Patent 6,365,192 (2002).
45. J. Shimoda, US Patent 5,906,638 (1999).
46. M. Yatagai, R. Ito, T. Ohira, and K. Oba, (1995) Effect of Charcoal on Purification of Wastewater. Mokuzai Gakkaishi, 41, 425.
47. Y. Hirata, Kyoto, Y. Ueda, H. Takase, US Patent 6, 833, 145 (2004).
48. W. S. Lee, KR Patent 087,589 (2002).
49. K. J. Sasaki, US Patent 6,316,102 (2001).
50. I. M. Yuasa, and K. J. Hiramatsu, US Patent 5,981,063 (1999).
51. D. Ruan, L. Zhang, Z. Zhang and X. Xia, J. Polym. Sci. Part B: Polym. Phys. , 42, 367 (2004).
52. J. T. Yeh, W. Wei, H. H. Hsiung and T. Jiang, J. Polym. Eng., 26, 117 (2006).
53. J. T. Yeh, H. H. Hsiung, T. Jiang and K. N. Chen, J. Appl. Polym. Sci., accepted for publication and in press (2007).
54. T. Sugihara, M. Suzuki and M. M. Komiya, US Patent 6,034,520 (2000).
55. A. P. Krueger, Int. J. Biometeorol. 29, 205 (1985).
56. M. Suzuki,; T. Sugihara. US Patent 5,863,653 (1999).
57. X. L. Ge, and E. Li, CN Patent 1,425,503 (2003).
58. W. S. Lee, KR Patent 087,588 (2002).
59. H. Tatsumi, US Patent 6,509,294 (2003).
60. J. E. Konihi, US Patent 6,365,192 (2002).

無法下載圖示 全文公開日期 2013/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE