簡易檢索 / 詳目顯示

研究生: 辜聖閎
Sheng-Hung Ku
論文名稱: 利用溶膠-凝膠法製備p型Al掺雜ZnO:N薄膜並探討其結構、光學與電性質
Structural, Optical and Electrical Properties of Stable p-type Al Doped ZnO:N Films Using Sol-Gel Process
指導教授: 鄭偉鈞
Wei-Chun Cheng
任盛源
Shien-Uang Jen
口試委員: 尚格偉
Rajalingam Thangavel
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 鋁掺雜含氮氧化鋅薄膜
外文關鍵詞: Al doped ZnO:N thin films
相關次數: 點閱:239下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

採用鋁、氮共掺雜的氧化鋅已被證實為製備p型氧化鋅中一種有效的方法使用。本實驗使用溶膠-凝膠法於藍寶石(0 0 0 1)基板上製備不同濃度鋁掺雜氧化鋅薄膜,並且於氨氣氣氛下退火以獲得鋁掺雜之含氮氧化鋅薄膜。所有的樣品皆利用X-ray繞射光譜、掃描式電子顯微鏡、光致螢光光譜、拉曼光譜以及霍爾效應測量儀檢測,以瞭解不同濃度鋁掺雜的影響。
XRD結果證實所有的樣品皆為六方晶系纖鋅礦結構,同時具有沿c軸(0 0 0 2)成長的擇優取向;(0 0 0 2)面的半高寬隨著掺雜濃度增加而提高這表示了有更多的鋁、氮雜質溶入氧化鋅中;表面形貌的觀察將透過SEM來進行。三種不同濃度之鋁掺雜含氮氧化鋅薄膜其PL顯示分別於3.32 eV、3.33 eV、 3.34 eV具有強烈的紫外線放射;這是由於鋁和氮的掺雜導致了能隙寬度的增加進而使得光譜於紫外線波段出現藍位移的現象,同時近能隙邊緣的光致螢光下降是由於導帶被自由載子充滿以及非幅射式的放射增加所致;同時光譜具有微弱的近紅外線放射,此微弱的近紅線放射是由於自由載子的再結合。
拉曼光譜中隨著Al_Zn^(3+)取代鋅原子位置的量增加其E2(low)聲子的波數也相對的提升。鋁和氮的掺雜導致了壓應力的產生使得E2(high)訊號的波數也往增加的方向移動,另外還可以觀察到三重的多重聲子訊號。霍爾效應量測顯示所有的樣品皆為p型氧化鋅薄膜,最高載子濃度為3莫耳%之鋁掺雜含氮氧化鋅薄膜的4.91×1018 cm-3, 2莫耳%之鋁掺雜含氮氧化鋅薄膜擁有最佳的載子遷移率59.0 cm2V-1s-1及最低電阻率0.034 Ω-cm。


A different approach for co-doping in ZnO using Al-N as dopant has been attempted to realize p-type ZnO. The effect of Al doped ZnO thin films were grown on sapphire (0 0 0 1) substrates using sol-gel method and annealing with ammonia ambient in order to obtained p-type Al doped ZnO:N thin films were subjected to X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), Raman spectroscopy and Hall measurements.
The XRD analysis reveals that all thin films have grown in the form of hexagonal Wurtzite structure with (0 0 0 2) preferential orientation. The FWHM of (0 0 0 2) peak increase till 3 mol % Al doped ZnO:N and increases for further addition of Al-N indicating incorporation of more impurities (dopants). Surface morphology of the films was analyzed using SEM. The PL spectra of three different concentration of p-type Al doped ZnO:N showed a strong UV emission band located at 3.32 eV, 3.33 eV, 3.34 eV respectively and a very weak infrared emission associated with free carrier recombination. Al an N incorporation induced a blue shift of optical band gap and quenching of the near-band-edge PL for thin film because of the band-filling effect of free carrier and nonradiative recombination.
In micro- Raman Scattering for doped ZnO film, An increase in the E2 (low) phonon wavenumber is ascribed to increased the Al_Zn^(3+) replaced on the Zn site and increase in the E2 (high) phonon wavenumber due to Al and N doped induced compressive stress. Multiple phonon behaviour was observed up to 3rd order. The electrical properties of Al doped ZnO:N thin films are p type, 3 mol% Al doped ZnO:N thin films with highest hole carrier concentration ~4.91×1018 cm-3, 2 mol% Al doped ZnO:N thin films with highest mobility ~59.0 cm2V-1s-1 and lowest resistivity 0.034 Ω-cm.

第一章 緒 論 1 1.1 氧化鋅之介紹 2 1.1.1 氧化鋅之基本性質 2 1.1.2 氧化鋅之光電特性 4 1.1.3 氧化鋅之製備方式 6 1.2 氧化鋅之應用 7 1.3 研究動機與目的 8 第二章 實驗原理 10 2.1 溶膠-凝膠法 10 2.2 X-ray繞射光譜 12 2.2 拉曼光譜(Raman spectra) 14 2.3 光致螢光光譜 17 2.4 霍爾效應 19 2.5 掃描式電子顯微鏡 21 第三章 實驗流程與儀器設備 24 3.1 實驗流程 24 3.1.1 藥品 24 3.1.2 基板清洗 25 3.1.3 樣品製備 26 3.2 儀器設備 28 3.2.1 溶膠-凝膠法 28 3.2.2 旋轉塗佈法 28 3.2.3 高溫爐 29 3.2.4 X-ray 繞射光譜分析儀 30 3.2.5 共振式微拉曼光譜分析儀 31 3.2.6 光致螢光光譜分析儀 31 3.2.7 霍爾效應 32 3.2.8 掃描式電子顯微鏡 33 第四章 結果與討論 34 4.1 不同濃度掺雜對結構與形貌之影響 34 4.1.2 結晶結構 34 4.1.3 表面形貌 38 4.2 光學性質 42 4.2.1 光致螢光 42 4.2.2 拉曼光譜 46 4.3 霍爾效應 52 第五章 結 論 55 參考文獻 58

參考文獻
[1]. 吳秉勳,國立彰化師範大學光電科技研究所碩士論文,(2007)。
[2]. F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin and Y. S. Yu, J. Appl. Phys. 95 9 (2004).
[3]. 洪春芳,國立中山大學材料科學研究所碩士論文,(2006)。
[4]. X. Wei, B. Man, C. Xue, C. Chen and M. Lin, Jpn. J. Appl. Phys. 45, 8586 (2006).
[5]. Mathew Joseph, Hitoshi Tabata and Tomoji Kawai, Jpn. J. Appl. Phys. 38 L1205 (1999).
[6]. T. Yamamoto, H. K. Yoshida, Jpn. Appl. Phys. 38 L166 (1999).
[7]. C. H. Park, S. B. Zhang and S. H. Wei, Phys. Rev. B 66, 073202 (2002).
[8]. James D. Plummer Silicon VLSI Technology.
[9]. Zhang Xiaodan, Fan Hongbing, Zhao Ying, Sun Jian, Wei Changchun and Zhang Cunshan, Applied Surface Science 253 3825-3827 (2007).
[10]. J. L. Zhao, X. M. Li, J. M. Bian, et al. J. Cryst. Growth 276507-512 (2005).
[11]. S. Fujihara, J. kusakado and T. Kimura, journal of materials science latters, Vol17, pp.781-783 (1998).
[12]. Masashi Ohyama, Hiromitsu Kozuka, Toshinobu Yoko, Thin Solid Films 306 78-85 (1997).
[13]. E. L. Paradis and A. J. Shuskus. Thin Solid Films. 38 131-14 (1976)
[14]. T. Miyata, T. Hikosaka and T. Minami, Sens. Actuators B. Chem, 69, 16 (2000).
[15]. Porter F. Zinc Handbook: Properties, Processing, and Use in Design (1991).
[16]. Nav Bharat Metallic Oxide Industries Pvt. Limited. Applications of ZnO. Access date January 25, 2009.
[17]. Selected Powder Diffraction Data for Metals and Alloys, Vol. I. (USA JCPDS, International Centre for Diffraction Data), p. 108, 1978.
[18]. Daoli Zhang, Jianbing Zhang, Yougyuang Cheng, Lin Yuan and Xiangshui Miao, J. Am. Ceram. Soc 1-8 (2010).
[19]. ShouBin Xue, HuiZhao Zhang, Chengshan Xue, Lijun Hu, Baoli Li and Shiying Zhang, journal of Electronic Material Vol. 36 No.4 (2007).
[20]. Jim-Hong Lee, Byung-Ok Park, Thin Solid Films 426 94-99 (2003).
[21]. B. D. Cullity, Elements of X-ray Diffraction (2nd edn), Addison-Wesley: Reading, MA, 1978.
[22]. M. Dutta, T. Ghosh, and D. Basak, Journal of Electronic Materials, Vol. 38, No. 11, (2009).
[23]. R. Thangavel, Rakesh Singh Moirangthem, Wei-Shan Lee, Yia-Chung Chang, Pei-Kuen Wei and J. Kumar, J. Raman Spectrosc (2010).
[24]. E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumon, P. Gibart, J. A. Munoj and F. Cusso, Semicond. Sci. Technol. 13, 1042 (1998).
[25]. 陳彥宏,國立清華大學材料科學工程學系碩士論文,(2001)。
[26]. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, J. Apply. Phys. Vol.79(10), pp. 7983-7990, (1996).
[27]. Y. J. Lin, C. L. Tsai, J. Appl. Phys. 100, 113721 (2006).
[28]. R. Jothilakshmi, V. Ramakrishnan, R. Thangavel, J. Kumar, A. Saruac, M. Kuball, J. Raman Spectrosc. (2009), 40 556.
[29]. J. Wrzesinski, D. Frohlich, Phys. Rev. B 1997, 56, 13087.
[30]. C. h. Park, S. B. Zhng, S. H. Wei, Phys. Rev. B66 (2002) 73202.

QR CODE