簡易檢索 / 詳目顯示

研究生: 劉俊甫
Giun-Fu Liu
論文名稱: 電腦化心像旋轉測驗維度表現之比較
The Comparisons of Performances in the Two-dimensional and Three-dimensional Computerized Mental Rotation Test
指導教授: 鄭海蓮
Hi-Lian Jeng
口試委員: 胡朝榮
Chaur-Jong Hu
黃金蘭
Chin-Lan Huang
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 80
中文關鍵詞: 空間能力心像旋轉二維與三維性別差異年級差異交互作用
外文關鍵詞: Spatial ability, mental rotation, two-dimensional and three-dimensional, gender difference, grade difference, interaction.
相關次數: 點閱:345下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討測驗的維度呈現型式對於個體的心像旋轉認知處理的影響,並以不同年級與性別觀之,以觀察可能有的交互作用。
    本研究對象為國小四、五、六年級學生共452位學生,實施自編的電腦化心像旋轉測驗共20題,受試者同時接受兩種維度呈現(2D與3D動畫)的試題,以重複測量的三因子(試題維度、年級、性別)變異數分析測驗分數與測驗時間。
    研究結果顯示,試題維度、年級、性別之間沒有顯著的三因子交互作用。在測驗分數方面,亦無顯著的二因子交互作用與測驗維度的主要效果,年級之間的差異表現在於五、六年級的測驗分數皆高於四年級,性別之間的差異表現在於男童的測驗分數高於女童。在測驗時間方面,測驗維度與性別以及性別與年級分別呈現顯著的二因子交互作用,顯示女童的測驗時間在五年級時顯著地多於男童,而男童在五、六年級的測驗時間多於其四年級,女童的五年級測驗時間分別多於其四、六年級。另外,測驗分數與測驗時間在各種分組情形下皆顯示正相關,表示得分越高者,所需時間越多;反之亦然。
    研究主要結論為,心像旋轉測驗分數存在性別與年級差異,即男童分數高於女童,且男女童的測驗分數均於五年級時開始顯著提高,表示心像旋轉於青春期開始顯現差異。測驗時間則存在較為複雜的二因子交互作用,但使用3D動畫呈現型式可以減緩在測驗時間上的認知負荷與性別差異,男女童僅在五年級時表現最大的測驗時間差距。測驗分數與測驗時間的正相關顯示,測驗時限與測驗結果很有關聯。
    引此本研究建議,於教材訓練與測驗編撰、各種介面設計、商品設計與訊息、媒體與廣告、公共安全警示標誌等範疇上,應考慮維度呈現形式的識別速度、年齡、性別的差異與時限。


    The study explored the effects of dimensionality of the mental rotation test items on the subjects’ performance, and took grades and genders into account to observe their potential interaction effects.
    There were 452 students of grades four, five, and six. The computerized mental rotation test was consisted of 10 pairs of 20 items, having the same item being presented in traditional 2D and 3D dynamic formats and resulting in two items as a pair. With this design, the subjects received both 2D and 3D dynamic items, therefore the repeated measures three-way analysis of variances was adopted to analyze the test scores and test time.
    The results showed that, there was no significant three-way interaction at all. For test scores, there were no significant two-way interaction and no main effect of dimensionality, the test scores of grades five and six were higher than those of grade four, and the boys’ test scores were higher than the girls’. As for the test time, there were significant two-way interaction between dimensionality and genders, and genders and grades, resulting in that the girls’ test time was more than the boys’ in grade five, the boys’ test time in grades five and six were more than their grade four, and the girls’ test time in grade five was more than their grades four and six. Moreover, the correlation coefficients between test scores and test time were positive in all grouping conditions, meaning that the higher the test score is, the more the test time required, and vice versa.
    The main conclusions were that, there were gender and grade differences in mental rotation scores, that is, boys were higher than girls, and test scores were significantly higher since grade five for both genders, which implied that the mental rotation started to differentiate during the puberty. The conclusions also suggested significant two-way interaction in test time, but the 3D dynamic format may decrease the cognitive loading and gender differences in test time, and both genders manifest the largest difference of test time required in grade five only. The positive correlation between test scores and time suggested that the time limit would be crucial in subjects’ performance.
    The conclusions suggested that, for the dimensionality of presentation, it is necessary to consider the speed of recognition, gender and age differences, and to adaptively arrange the materials, media, designs and time limit in teaching, training, testing, games, propaganda, and public safety and alert signs.

    目錄 I 表目錄 III 圖目錄 IV 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 名詞釋義 4 第四節 研究範圍與限制 5 第二章 文獻探討 7 第一節 空間能力的重要性 7 第二節 心像旋轉的定義 9 第三節 傳統心像旋轉任務 13 第四節 心像旋轉能力的個別差異 15 第五節 心像旋轉任務的難度 18 第六節 3D電腦動畫心像旋轉任務 21 第三章 研究方法 23 第一節 研究對象 23 第二節 研究工具 23 第三節 研究設計與假設 33 第四節 施測步驟 35 第五節 資料處理及統計方法 36 第四章 研究結果與討論 38 第一節 預試之試題分析 38 第二節 正式測驗之試題分析 44 第三節 描述性統計與常態分配檢驗 48 第四節 試題難度與鑑別度之相依樣本T檢定 49 第五節 測驗分數的三因子變異數分析 50 第六節 測驗時間的三因子變異數分析 53 第七節 測驗分數與測驗時間的相關考驗 58 第五章 結論與建議 60 第一節 結論 60 第二節 建議 62 參考文獻 66

    余民寧(2011)。教育測驗與評量-成就測驗與教學評量。台北 : 心理。
    卓沛勳、蕭孟莛、鄭海蓮(2006)。二維空間幾何圖形之心像旋轉角度與積木難度探討:以五連方幾何積木為例,第七屆海峽兩岸心理與教育測驗學術研討會,中國測驗學會。國立政治大學,2006年10月28、29日。
    洪蘭 (譯) (2002)。Rita Carter著。大腦的祕密檔案(Mapping the Mind)。台北:遠流。
    謝如山、謝名起、謝名娟 (譯) (2002)。C. A. Riedesel, J. E. Schwartz and D. H. Clements 著。數學科教材教法(Teaching Elementary School Mathematics)。台北:五南。
    Arnheim, R. (1969). Visual Thinking. Berkeley, CA: University of California Press.
    Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural brain research, 93(1-2), 185-190.
    Brandt, M., & Davies, E. T. (2006). Visual-spatial ability, learning modality and surgical knot tying. Canadian journal of surgery, 49(6), 412-416.
    Celec, P., Ostatnikova, D., Putz, Z., & Kudela, M. (2002). The circalunar cycle of salivary testosterone and the visual-spatial performance. Bratislavske Lekarske Listy, 103(2), 59-69.
    Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10(7), 915-921.
    Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850-855.
    Gardner, H. (2005, May). Multiple lenses on the mind. Paper presented at the ExpoGestion Conference, Bogota, Columbia.
    Geiser, C., Lehmann, W., Corth, M., & Eid, M. (2008). Quantitative and qualitative change in children's mental rotation performance. Learning and Individual Differences, 18(4), 419-429.
    Hahn, N., Jansen, P., & Heil, M. (2010). Preschoolers' mental rotation:Sex differences in hemispheric asymmetry. Journal of Cognitive Neuroscience, 22(6), 1244-1250.
    Hedman, L., Strom, P., Andersson, P., Kjellin, A., Wredmark, T., & Fellander-Tsai, L. (2006). High-level visual-spatial ability for novices correlates with performance in a visual-spatial complex surgical simulator task. Surgical Endoscopy, 20(8), 1275-1280.
    Heil, M., & Jansen, P. (2008). Sex differences in mental rotation with polygons of different complexity:Do men utilize holistic processes whereas women prefer piecemeal ones? The Quarterly Journal of Experimental Psychology, 61(5), 683-689.
    Jansen, P., & Heil, M. (2007). Suitable stimuli to obtain (no) gender differences in the speed of cognitive processes involved in mental rotation. Brain and Cognition, 64(3), 217-227.
    Janssen, A. B., & Geiser, C. (2010). On the relationship between solution strategies in two mental rotation tasks. Learning and Individual Differences, 20(5),473-478.
    Johnson, E. S., & Meade, A. C. (1987). Developmental patterns of spatial ability:An early sex difference. Child Development, 20(8), 725-740.
    Jordan, K., Wustenberg, T., Heinze, H. J., Peters, M., & Jancke, L. (2002). Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia, 40(13), 2397-2408.
    Kass, S. J., Ahlers, R. H., & Dugger, M. (1998). Eliminating gender differences through practice in an applied visual spatial task. Human Performance, 11(4), 337-349.
    Keehner, M., Montello, D. R., Hegarty, M., & Cohen, C. (2004). Effects of interactivity and spatial ability on the comprehension of spatial relations in a 3D computer visualization. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th annual conference of the cognitive science society (pp. 1576). Mahwah, NJ: Erlbaum.
    Kolb, B., & Whishaw, I. Q. (2008). Fundamentals of human neuropsychology. NY: Worth Publishers Press.
    Koscik, T., O'Leary, D., Moser, D. J., Andreasen, N. C., & Nopoulos, P. (2009). Sex differences in parietal lobe morphology: Relationship to mental rotation performance. Brain and Cognition, 69(3), 451-459.
    Kumar Chhabra, J., Aggarwal, K., & Singh, Y. (2003). Code and data spatial complexity: two important software understandability measures. Information and Software Technology, 45(8), 539-546.
    Larson, P., Rizzo, A., Buckwalter, J., Van Rooyen, A., Kratz, K., Neumann, U., . . . Van Der Zaag, C. (1999). Gender issues in the use of virtual environments. Cyberpsychology & Behavior:Tthe impact of the Internet, multimedia and virtual reality on behavior and society, 2(2), 113-123.
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability:A meta-analysis. Child Development, 56(6), 1479-1498.
    Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence, 181-248. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Maccoby, E. E., & Jacklin, C. N. (1976). The psychology of sex differences. Stanford, CA: Stanford University Press.
    McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-917.
    McWilliams, W., Hamilton, C., & Muncer, S. (1997). On mental rotation in three dimensions. Perceptual and Motor Skills, 85(1), 297-298.
    Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2011). Gender differences in pre-adolescents' mental-rotation performance:Do they depend on grade and stimulus type? Personality and Individual Differences, 50(8), 1238-1242.
    Noar, S. M. (2003). The role of structural equation modeling in scale development. Structural Equation Modeling, 10(4), 622-647.
    Parsons, T. D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J. G., & Rizzo, A. A. (2004). Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia, 42(4), 555-562.
    Peters, M., Lehmann, W., Takahira, S., Takeuchi, Y., & Jordan, K. (2006). Mental rotation test performance in four cross-cultural samples (N= 3367):Overall sex differences and the role of academic program in performance. Cortex, 42(7), 1005-1014.
    Pugnetti, L., Mendozzi, L., Motta, A., Cattaneo, A., Barbieri, E., & Brancotti, A. (1995). Evaluation and retraining of adults' cognitive impairments:Which role for virtual reality technology? Computers in Biology and Medicine, 25(2), 213-227.
    Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 1067-1070.
    Richardson, J. T. E. (1994). Gender differences in mental rotation. Perceptual and Motor Skills, 78(2), 435-448.
    Rizzo, A. A., Buckwalter, J. G., Neumann, U., Kesselman, C., & Thiebaux, M. (1998). Basic issues in the application of virtual reality for the assessment and rehabilitation of cognitive impairments and functional disabilities. CyberPsychology & Behavior, 1(1), 59-78.
    Rose, F. (1996). Virtual reality in rehabilitation following traumatic brain injury. In P. Sharkey, (Chair), Proceedings of the 1st International Conference on Disability, Virtual Reality & Associated Technologies. Reading, U.K.
    Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge: MIT Press.
    Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703.
    Shiffler, R. E. (1988). Maximum Z scores and outliers. The American Statistician, 42(1), 79-80.
    Tanner, J., Whitehouse, R., Marshall, W., & Carter, B. (1975). Prediction of adult height from height, bone age, and occurrence of menarche, at ages 4 to 16 with allowance for midparent height. Archives of Disease in Childhood, 50(1), 14-26.
    Tracy, D. M. (1987). Toys, spatial ability, and science and mathematics achievement:Are they related? Sex Roles, 17(3), 115-138.
    Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599-604.
    Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492.
    Zito, F. A., Marzullo, F., D'Errico, D., Salvatore, C., Digirolamo, R., Labriola, A., & Pellecchia, A. (2004). Quicktime virtual reality technology in light microscopy to support medical education in pathology. Modern Pathology, 17(6), 728-731.

    QR CODE