簡易檢索 / 詳目顯示

研究生: 莊錦俊
Ching-Chun Chuang
論文名稱: 無電解電容之微型太陽能換流器
Solar Micro-Inverter without Electrolytic Capacitors
指導教授: 羅有綱
Yu-Kang,Lo
口試委員: 王見銘
Chien-Ming,Wang
林長華
Chang-Hua,Lin
歐勝源
Sheng-Yuan,Ou
楊宗銘
Chung-Ming Young
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 142
中文關鍵詞: 諧波抑制技術電解電容高轉換效率最大功率追蹤隔離式微型太陽能換流器
外文關鍵詞: Isolated Solar Micro-inverter, Electrolytic Capacitor, Harmonic Suppression, High Conversion Efficiency, Maximum Power Point Tracking
相關次數: 點閱:329下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究一種模組整合微型換流器,採用DSP控制發展高性能隔離式微型太陽能換流器技術。所研究之市電併聯微型換流器可以從太陽能板擷取最大功率能量傳送至市電系統,且本文使用兩級電路之直流鏈型微型換流器,其解耦合電容放置在兩級電路中間,依據高壓直流鏈解耦合電容與漣波電壓關係,可選擇容值小的直流鏈匯流排電容,因此可不須使用電解電容,滿足高轉換效率、高準確度最大功率追蹤及長久使用壽命等性能要求。最後本文分析與討論微型太陽能換流器的操作原理與設計考量,並同時實現一台微型換流器雛型。由實驗測試結果顯示,證明了本文微型太陽能換流器架構的可行性。


This dissertation presents a module-integrated isolated solar micro-inverter. The studied grid-tied micro-inverters can individually extract the maximum solar power from each photovoltaic (PV) panel and transfer to the AC utility system. A harmonic suppression technique is used to reduce the DC-bus capacitance. Electrolytic capacitors are not needed in the studied solar micro-inverter. High conversion efficiency, high MPPT accuracy and long lifespan can be achieved. The operation principles and design considerations of the studied PV inverter are analyzed and discussed. A laboratory prototype is implemented and tested to verify its feasibility.

摘 要 I Abstract II 誌 謝 III 目 錄 IV 符 號 索 引 VIII 圖 目 錄 XVII 表 目 錄 XXIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 太陽能換流器之種類 2 1.3 研究目的與貢獻 5 1.4 論文大綱 6 第二章 太陽能模組暨換流器電路架構 7 2.1 太陽能模組之行為模型 7 2.2.1 電壓與電流漣波成份 7 2.2.2 解耦合電容 9 2.2 換流器電路架構 11 2.2.1太陽能換流器系統 11 2.2.2太陽能換流器之線路損耗探討 13 2.2.3功率解耦合技術 14 2.2.4直流鏈解耦合換流器拓樸的探討 16 2.3 結論 17 第三章 微型換流器分析 18 3.1 太陽能最大功率追蹤轉換器 19 3.2隔離型交錯式升壓轉換器電路 19 3.2.1 操作模式 19 3.2.2 功率電路設計 22 3.2.3 變壓器 24 3.2.4 電感 27 3.2.5 直流鏈薄膜電容 29 3.2.6 倍壓二極體 29 3.2.7 功率開關元件 30 3.2.8 輸入電容 31 3.2.9 倍壓電路 33 3.2.10 閘極驅動電路 34 3.2.11 模擬結果 35 3.3 單相換流器電路 36 3.3.1單相半橋式換流器 37 3.3.2單相全橋式換流器 37 3.3.3正弦波脈波寬度調變 38 3.3.4換流器功率電路 42 A 操作模式 42 B 直流鏈電容 46 C 功率開關元件 50 D 市電電網濾波器 50 E 換流器輸出濾波器設計 53 F 突衝電流限制 58 G 閘極驅動電路 59 H 模擬結果 61 3.4結論 62 第四章 微型換流器數位控制器設計 63 4.1 微型換流器使用壽命與控制結構 63 4.2 最大功率點追蹤演算 64 4.2.1擾動與觀察演算法 65 4.2.2最大功率追蹤暨抑制漣波演算法 67 4.2.3最大功率追蹤演算法之比較 70 4.3 鎖相迴路 71 4.3.1鎖相迴路控制 73 4.4 直流鏈電壓之控制 75 4.4.1直流鏈參考電壓 75 4.4.2直流鏈電壓控制器 76 4.4.3抑制低頻電壓諧波演算功能之原理說明 76 4.5 電網電流之控制 79 4.5.1電網前饋電壓 84 4.5.2市電併聯之電流控制模式 84 4.6 控制系統架構說明 87 4.6.1信號解析度與反混疊濾波器 88 4.6.2功率級電路 89 4.6.3離散時間完成的控制器 91 4.7 控制器之評估 94 4.7.1換流器之數學模型 95 4.7.2電流控制器設計 96 A電流PI控制器設計 97 B 電流PR控制器設計 99 4.7.3控制器之結論與探討 103 4.8 結論 104 第五章 微型換流器整機之測試與驗證 105 5.1 微型換流器測試 106 5.1.1系統電路雛型 107 5.1.2量測設置 110 5.2 電網介面測試 111 5.2.1輸出電流特性量測 111 5.2.2突衝電流的順序 111 5.2.3最大輸入功率變化與系統保護運作情形 112 5.3 太陽能模組測試 115 5.3.1最大功率追縱 115 5.3.2隔離型交錯式升壓轉換器實驗波形 117 5.3.3穩態測試 117 5.4 微型換流器併交流電源供應器測試與驗證 118 5.4.1輸入30V/ 輸出110V波形量測 125 5.4.2輸入30V/ 輸出220V波形量測 125 5.5 微型換流器獨立運轉輸出電壓諧波抑制測試與驗證 126 5.6 太陽能板端電壓漣波抑制測試與驗證 129 5.7 微型換流器評估 130 5.8 結論 131 第六章 結論與未來展望 132 6.1 結論 132 6.2 未來展望 132 參 考 文 獻 133

[1] Siemens, “Solar Module SP75,” Datasheet, 1998.
[2] http://www.ipcc.ch/
[3] Y. T. Hsiao and C. H. Chen, “Maximum power tracking for photovoltaic power system,” 37th IAS Annual Meeting, vol. 2, pp. 1035-1040, Oct. 2002.
[4] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, 3rd edition. John Wiley and Sons Inc., 2003.
[5] IEA PVPS Task V, report IEA-PVPS T5-01 (1998), “Utility aspects of grid connected photovoltaic power systems”.
[6] “Interconnecting Distributed Resources with Electric Power Systems,” IEEE std. 1547, 2003.
[7] F. Blaabjerg, Z. Chen, and S. B. Kjar, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. on Power Electronics, vol. 19, no. 5, pp. 1184-1194, Sept. 2004.
[8] M. Meinhardt and G. Cramer, “Past, present and future of grid connected photovoltaic- and hybrid-power-systems,” Proc. IEEE-PES Summer Meeting, vol. 2, pp. 1283-1288, 2000.
[9] M.Calais, J. Myrzik, T. Spooner, and V.G. Agelidis, “Inverters for single-phase grid connected photovoltaic systems – an overview,” IEEE PESC Conf. Rec., vol. 4, pp. 1995-2000, 2002.

[10] M. Meinhardt and G. Cramer, "Multi-string-converter: The next step in evolution of string-converter technology," Proc. 9th Eur. Power Electronics and Applications Conf., 2001.
[11] S. B. Kjar, J. K. Pedersen, and F. Blaabjerg, “Power inverter topologies for photovoltaic modules—A review,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 2, 2002, pp. 782–788.
[12] H. Oldenkamp, I. J. de Jong, “AC modules: past, present and future,” Proc. Workshop Installing the Solar Solution, Hatfield, U. K., 1998.
[13] H. Haeberlin, “Evolution of inverters for grid connected PV-systems from 1989 to 2000,” Proc. 17th Eur. Photovoltaic Solar Energy Conf., Munich, Germany, Oct, 22–26, 2001, pp. 426–430.
[14] Yaosuo Xue, Liuchen Chang, Sren Baekhj Kjar, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans on Power Electronics, vol. 19, no. 5, pp. 1305-1314, Sept 2004.
[15] B. Lindgren, “Topology for decentralized solar energy inverters with a low voltage ac-bus,” Proc. EPE, 1999.
[16] C. W. G. Verhoeve, G. F. A. Frumau, E. de Held, W. C. Sinke, “Recent test results of AC-module inverters,” Proc. of the 14th European photovoltaic solar energy conference, 1997.
[17] J. M. A. Myrzik and M. Calais, “String and module integrated inverters for single-phase grid connected photovoltaic systems—A review,” in Proc. IEEE Bologna Power Tech Conf, vol. 2, pp. 430–437, 2003.
[18] G. Keller, T. Kreiger, M. Viotto, and U. Krengel, “Module oriented photovoltaic inverters–a comparison of different circuits,” IEEE First World Conference on Photovoltaic Energy Conversion and IEEE Photovoltaic Specialists Conference, pp. 929-932, 1994.
[19] Life-limiting factors in electrolytic capacitors (and how to improve them), Evox-Rifa, 2004.
http://www.evox-rifa.com.
[20] Electrolytic capacitors application guide, Evox-Rifa, 2004.
http://www.evox-rifa.com.
[21] S.W.H. de Haan, H. Oldenkamp, C. F. A Frumau, and W. Bonin, “Development of a 100W; a modular solar AC power station,” IEEE proc. of the 24th photovoltaic specialists conference, vol. 1, pp. 925-928, 1994.
[22] C. Prapanavarat, M. Barnes, and N. Jenkins, “Investigation of the performance of a photovoltaic AC module,” IEE proc. - Gener. Transm. Distrib., vol. 149, no. 4, pp. 472-478, July 2002.
[23] G. Feng, L. Ding, L. Poh Chiang, T. Yi, and W. Peng, “Indirect dc
-link voltage control of two-stage single-phase PV inverter,” IEEE Energy Conversion Congress and Exposition, ECCE, pp.1166-1172, 2009.
[24] A. Li and P. Wolfs, “A current fed two-inductor boost converter with lossless snubbing for photovoltaic module integrated converter applications,” IEEE 36th. Power Electronics Specialists Conference, pp. 2111-2117, 2005.
[25] Y.-M. Chen, H.-C. Wu, and C.-Hang, “Selection of DC link capacitance for grid-connected PV system,” IEEE International Conference on Power Electronics and Drive System, pp72-77, Taipei, Nov. 2009.
[26] Electrical interface for domestic cogeneration. Requirements for grid connection for microcogeneration systems for domestic use up to 16A per phase, CEN Workshop Agreement-CWA for domestic cogeneration, ver.3.0, CEN, 2001.
[27] A Emadi, A. Nasiri, and S. B. Bekiarov, “Uniterruptible Power Supplies And Active Filters, CRC press”, Bocaaton, 2004.
[28] A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, “Predictive DC voltage control of single-phase PV inverters with small DC link capacitance,” in Proc. IEEE-ISIE’03, 2003, pp. 793-797.
[29] Z. Salameh, F. Dagher and W.A. Lynch, “Step-down maximum power point tracker for photovoltaic system,” Solar Energy, vol. 46, no. 1, pp. 278-282, 1991.
[30] Y. T. Hsiao and C. H. Chen, “Maximum power tracking for photovoltaic power system,” Proceedings of the 2002 IEEE Industry Applications Conference, the 37th Annual Meeting, October 13-17, 2002, Pittsburgh, Pennsylvania, USA.
[31] 莊清閒,「新型單級高升壓比直交流轉換器之建模與製作」,國立清華大學電機工程系碩士論文,民國九十九年。

[32] J. Schonoberger, “A single-phase multi-string PV inverter with minimal bus capacitance,” 9th European Conference on Power Electronics and Applications, 2009.
[33] M. Veerachary, T. Senjyu, and K. Uezato, “Voltage-based maximum power point tracking control of PV system,” IEEE Tran. Aerospace Electron. Sys., vol. 38, no. 1, pp. 262-270,月份, 2002.
[34] A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, “Predictive DC voltage control of single-phase PV inverters with small DC link capacitance,” in Proc. IEEE-ISIS’03,2003, pp. 793-707.
[35] H. Hu, S. Harb, X. Fang, D. Zhang, O. Zhang, and Z.J. Shen “A Three-port Flyback for PV Microinverter Applications With Power Pulsation Decoupling Capability,” IEEE Trans on Power Electronics, vol. 27, no. 9, pp. 3953-3964, Sep. 2012.
[36] L. L. Gu, X. B. Ruan, M. Xu and K. Yao, “Means of eliminating electrolytic capacitor in AC/DC power supplies for LED lighting,” IEEE Trans. on Power Electronics., vol. 24, no. 5, pp. 1399-1408, May 2009.
[37] 李天鵬,「市電與太陽能電池直流並聯供電系統」,國立台灣科技大學電子工程系碩士論文,民國九十六年。
[38] 謝宏燦,「基於DSP控制之獨立型太陽能供電系統」,國立台灣科技大學電子工程系碩士論文,民國九十八年。
[39] Y. Jung, J. So, G. Yu, and J. Choi, “Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power systems,” IEEE Photovoltaic Specialists Conf., pp. 1788-1791, Jan. 2005.
[40] S. B Kjar, G. K. Andersen, C. Klumpner, and F. Blaabjerg, “Control Aspects of a LCL Grid-Connected Green Power Inverter,” Proc. of NORPIE'2002, IEEE Nordic Workshop on Power and Industrial Electronics, Stockholm, Sweden, Aug. 12-14, 2002.
[41] G. F. Franklin, J. D. Powell, Abbas. Emami-Naeini, Feedback Control of Dynamic System, 3rd edition, Addison Wesly, 1994. .
[42] D.N. Zmood, D.G. Holmes, G. Bode, “Frequency domain analysis of three phase linear current regulators,” IEEE proc. of the 34th annual industry application conference (IAS’99), vol.2, pp. 818-825, 1999.
[43] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” IEEE proc. of the 19th annual applied power electronics conference and exposition (APEC’04), vol. 1, pp. 580-586, 2004.
[44] Texas Instruments, “TMS320F28035, TMS320F2809, TMS320-
F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320-
C2802, TMS320C2801, and TMS320F2801xDSPs Data Manual,” Datasheet, 2003.
[45] A. Hasanzadeh, O. C. Onar, H. Mokhtari, A. Khaligh, “Aproportional-resonant controller-based wireless control strategywith a reduced number of sensors for parallel-operated UPSs”, IEEE Trans. on Power Delivery, vol. 25, no. 1, pp. 468-478, Jan. 2010.
[46] K.J. Aastrom and T. Hagglund, PID Controllers: Theory, Design and Tuning Research Triangle Park, NC:ISA, 1994.
[47] G. Franceschini, E. Lorenzani, C. Tassoni and A. Bellini,“Inability to track a sinusoidal reference without steady-state error and poor disturbance rejection capability,” in the Proc. of IEEE Industry Applications Society Annual Meeting, Oct. 2008,pp. 1-7.
[48] C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, “High performance current controller for selective harmonic compensation in active power filters,” IEEE Trans. on Power Electronics, vol. 22, no. 5, pp. 1826-1835, Sep. 2007.
[49] C. L. Chen, Y. B. Wang, J. S. Lai, Y. S. Lee, and D. Martin, “Design of parallel inverters for smooth mode transfer microgrid applications”, IEEE Trans. on Power Electronics, vol. 25, no. 1, pp. 6-15, Jan. 2010.
[50] R. Teodorescu, F. Blaabjerg, M. Liserre and P.C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEEE Trans on Power Electronics, vol. 153, no. 5, pp. 750-762, 2006.
[51] G. Shen, D. Xu, L. Cao, and X. Zhu, “An improved control strategy for grid-connected voltage source inverters with an LCL filter,” IEEE Trans. on Power Electronics, vol. 23, no. 4, pp. 1899–1906, Jul. 2008.
[52] 呂紹捷、賴炎生,“具有熱插拔及均流控制功能之新型變頻器並聯系統”,2012第十一屆台灣電力電子研討會暨展覽,2012年9月11 日,新竹,臺灣。
[53] A. Lucian, T. Remus, B. Frede, and B. Uffe, “A Digital Controlled PV-Inverter With Grid Impedance Estimation for ENS Detection,” IEEE Trans. on Power Electronics, vol. 26, no. 6, pp. 1480-1490, Jan. 2005.
[54] POWER Integration, TNY274-280 TinySwitch-III Family Complete Data Sheet, POWER Integrations Inc.
[55] VPerformance MODELING COLLABORATIVE, 2012, http://pvpmc.org/modeling-steps/dc-to-ac-conversion-2/inverter-efficiency/cec-inverter-test-protocol.
[56] J. L. Lin, “A new approach of dead-time compensation for pwm voltage inverter,” IEEE Trans. on Circuit and System, vol. 49, No. 4, pp. 476-483, Apr. 2002.
[57] 李天鵬,「市電與太陽能電池直流並聯供電系統」,國立台灣科技大學電子工程系碩士論文,民國九十六年。
[58] A. I. Pressman, Switching Power Supply Design. Second-Edition, McGraw-Hill, Inc., 1998.
[59] J.-G. Cho, C.-Y. Jeong, F. C. Y.Lee, “Zero-voltage and zero-current-switching full-bridge PWM converter using secondary active clamp,” IEEE Trans. on Power Electronics, vol. 13, no. 4, pp. 601-607, July, 1998.
[60] L. Quan and P. Wolfs, “A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations,” IEEE Trans. on Power Electronics, vol. 23, pp. 1320-1333, 2008.
[61] C. Bendel, A. Wagner, “Photovoltaic measurement relevant to the energy yield,” in the Proc. of IEEE Photovoltaic Energy Conversion, 2003, pp. 1-7.
[62] D. L. King, B. R. Hansen, J.A.Kratochvil, M. A. Quintana, “Dark current-voltage measurements on photovoltaic modules as a diagnostic or manufacturing tool,” in the Proc. of IEEE Photovoltaic Specialists Conference, 1997,pp. 1125-1128.

QR CODE