簡易檢索 / 詳目顯示

研究生: 謝源生
Ian - Sofian Yunus
論文名稱: 利用高選擇性的纖維素生物分子複合物修復鈀汙染水並應用於三氯乙烯的降解
Highly Selective Biomolecule-Cellulose Complexes for Palladium-Polluted Water Remediation and Its Potential Application for Degradation of Trichloroethylene
指導教授: 蔡伸隆
Shen-long Tsai
口試委員: 劉志成
Jhy-chern Liu
趙玲
Ling Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 58
中文關鍵詞: 三氯乙烯纖維素吸收
外文關鍵詞: trichloroethylene, cellulose, palladium, adsorpt
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討纖維素生物分子複合物(PdBP-CBD-cellulose)對於鈀(II)金屬離子與其他競爭離子在水中的吸附狀況以及之後做為三氯乙烯(TCE)的除氯反應之生物觸媒轉化率。由鈀結合肽(Pd binding peptide)與纖維素結合區域(cellulose binding domain)所組成的融合蛋白質將表達在大腸桿菌中(Escherichia coli),將可以使其結合上纖維素並運用於鈀汙染之水修復上。本研究發現PdBp-CBD-cellulose複合物在寬廣的酸鹼範圍仍具有良好的效用且在pH 3.08下對於鈀的吸附為最佳條件,另外我們也發現了溫度的效應對於鈀的吸附並無太大影響。基於用來描述單層吸附的Langmuir adsorption isotherm,我們得知PdBP-CBD-cellulose對於鈀具有很高的吸附率,最大的吸附值為169.49 mg.g-1。從鈀的移除之動力學發現了其遵守擬二階(pseudo-second order)速率式。PdBP-CBD-cellulose複合物對於鈀的吸附在實驗結果中顯示了良好的重複使用率(reusability)。另外對於選擇率的實驗,我們使用了鉑(Pt)來做吸附的競爭離子,PdBP-CBD-cellulose複合物展現了對於鈀有很高地吸附選擇率。這些實驗結果對於含有不同金屬離子的溶液中的選擇性移除之發展與最佳化是非常重要的。此外,我們將生物法回收的鈀進一步用來當作三氯乙烯之除氯反應的觸媒。利用此生物觸媒0.14 mg 對於146 mg.L-1的三氯乙烯進行脫鹵反應到達完全反應約花費了20分鐘。本研究展示了環保的鈀觸媒之可行性以及其在於三氯乙烯的除氯之應用。


This work examines the adsorption of Pd(II) and other interfering ions in natural waters on PdBP-CBD-cellulose complexes and its conversion to a bioinorganic catalyst for dechlorination of trichloroethylene (TCE). In-frame fusion protein, which is composed of palladium binding peptides (PdBP) and cellulose binding domains (CBD), was expressed in Escherichia coli (E. coli) and allowed to bind cellulose for remediation of palladium-polluted water. The adsorption of Pd(II) was best at pH 3.08. The results indicated the wide working pH condition of PdBP-CBD-cellulose complexes and the insignificant effect of temperature on palladium adsorption. Based on the Langmuir adsorption isotherm, it was found that the maximum adsorption capacity of the PdBP-CBD-cellulose was 169.49 mg.g-1 displaying a high adsorption capacity toward Pd(II). The Langmuir adsorption isotherm was applicable to describe the monolayer coverage adsorption processes. Kinetics of the Pd(II) removal was found to follow pseudo-second order rate equation. The results also showed that PdBP-CBD-cellulose omplexes exhibited a good reusability for Pd(II) adsorption. Furthermore, in the presence of Pt(IV), the PdBP-CBD-cellulose complexes still showed highly selective adsorption of palladium ions allowing efficient recovery of Pd(II). These results are important for developing and optimizing the selective removal of different metal ions in mixed solutions by biomolecules-cellulose complexes. In addition, the biorecovered Pd(II) was further used as catalyst for dechlorination of trichloroethylene (TCE). Complete dehalogenation of 146 mg.L-1 TCE was achieved within 20 min using approximately 0.14 mg nanopalladium catalyst. This study demonstrated the possibility of environmentally-friendly production of palladium catalyst and its application for TCE degradation.

摘要 i ABSTRACT ii ACKNOWLEDGMENTS iii CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 Palladium Sources and Markets 4 2.2 Palladium Usage in Automotive Catalytic Converters 6 2.3 Release of Palladium from Autocatalysts into the Environement 7 2.4 Effects of Palladium in Living Organisms 7 2.5 Biosorption Methods for Palladium Recovery 8 2.6 Palladium Adsorption Mechanisms 10 2.7 DNA Recombinant as a Tool for Adsorbent Development 13 2.7.1 Cellulose Binding Domains (CBD) 13 2.7.2 Palladium Binding Peptides (PdBP) 13 2.8 Trichloroethylene (TCE): Sources, Uses, and Environmental Exposure 14 2.9 Methods for TCE Dechlorination 14 2.10 Development of Green Palladium Nanoparticle Biosupported Catalyst from Wastewater 15 CHAPTER 3 EXPERIMENTAL SECTION 16 3.1 Plasmid Constructions 16 3.2 Protein Expression. 17 3.3 Batch Adsorption of Palladium 17 3.4 Recovery and Reuse 19 3.5 Continuous Adsorption of Palladium. 19 3.6 Lemna minor Growth Inhibition Test. 20 3.7 Preparation of Pd Catalyst 21 3.8 Hydrodechlorination of TCE 21 CHAPTER 4 RESULTS AND DISCUSSION 23 4.1 Plasmid Construction and Protein Expression 23 4.2 Effect of pH 23 4.3 Effect of temperature 25 4.4 Adsorption Selectivity 25 4.5 Adsorption Kinetics 26 4.6 Adsorption Isotherms 30 4.7 Regeneration/Reuse 32 4.8 Column Adsorption 33 4.9 Lemna Minor Growth Inhibition Test 34 4.10 TCE Dechlorination by Palladium Nanoparticles 36 CHAPTER 5 CONCLUSIONS 38 REFERENCES 39

1. Zereini, F.; Alt, F.; Messerschmidt, J.; von Bohlen, A.; Liebl, K.; Puttmann, W., Concentration and Distribution of Platinum Group Elements (Pt, Pd, Rh) in Airborne Particulate Matter in Frankfurt am Main, Germany. Environmental Science & Technology 2004, 38, (6), 1686-1692.
2. Sen, I. S., Platinum Group Element Pollution is a Growing Concern in Countries with Developing Economy. Environmental Science & Technology 2013, 47, (24), 13903-13904.
3. De Corte, S.; Hennebel, T.; De Gusseme, B.; Verstraete, W.; Boon, N., Bio-palladium: from metal recovery to catalytic applications. Microbial Biotechnology 2012, 5, (1), 5-17.
4. Das, N., Recovery of precious metals through biosorption — A review. Hydrometallurgy 2010, 103, (1–4), 180-189.
5. Guibal, E., Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology 2004, 38, (1), 43-74.
6. Guibal, E.; Von Offenberg Sweeney, N.; Vincent, T.; Tobin, J. M., Sulfur derivatives of chitosan for palladium sorption. Reactive and Functional Polymers 2002, 50, (2), 149-163.
7. Guibal, E.; Von Offenberg Sweeney, N.; Zikan, M. C.; Vincent, T.; Tobin, J. M., Competitive sorption of platinum and palladium on chitosan derivatives. International Journal of Biological Macromolecules 2001, 28, (5), 401-408.
8. Ramesh, A.; Hasegawa, H.; Sugimoto, W.; Maki, T.; Ueda, K., Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource Technology 2008, 99, (9), 3801-3809.
9. Ruiz, M.; Sastre, A. M.; Guibal, E., Palladium sorption on glutaraldehyde-crosslinked chitosan. Reactive and Functional Polymers 2000, 45, (3), 155-173.
10. Zhou, L.; Xu, J.; Liang, X.; Liu, Z., Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Journal of Hazardous Materials 2010, 182, (1–3), 518-524.
11. Parajuli, D.; Kawakita, H.; Inoue, K.; Funaoka, M., Recovery of Gold(III), Palladium(II), and Platinum(IV) by Aminated Lignin Derivatives. Industrial & Engineering Chemistry Research 2006, 45, (19), 6405-6412.
12. Parajuli, D.; Inoue, K.; Kawakita, H.; Ohto, K.; Harada, H.; Funaoka, M., Recovery of precious metals using lignophenol compounds. Minerals Engineering 2008, 21, (1), 61-64.
13. Ma, H.-w.; Liao, X.-p.; Liu, X.; Shi, B., Recovery of platinum(IV) and palladium(II) by bayberry tannin immobilized collagen fiber membrane from water solution. Journal of Membrane Science 2006, 278, (1–2), 373-380.
14. Ramakul, P.; Yanachawakul, Y.; Leepipatpiboon, N.; Sunsandee, N., Biosorption of palladium(II) and platinum(IV) from aqueous solution using tannin from Indian almond (Terminalia catappa L.) leaf biomass: Kinetic and equilibrium studies. Chemical Engineering Journal 2012, 193–194, (0), 102-111.
15. Gurung, M.; Adhikari, B. B.; Alam, S.; Kawakita, H.; Ohto, K.; Inoue, K., Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals. Chemical Engineering Journal 2013, 228, (0), 405-414.
16. Yong, P.; Rowson, N. A.; Farr, J. P. G.; Harris, I. R.; Macaskie, L. E., Bioaccumulation of palladium by Desulfovibrio desulfuricans. Journal of Chemical Technology & Biotechnology 2002, 77, (5), 593-601.
17. de Vargas, I.; Macaskie, L. E.; Guibal, E., Biosorption of palladium and platinum by sulfate-reducing bacteria. Journal of Chemical Technology & Biotechnology 2004, 79, (1), 49-56.
18. Won, S. W.; Kotte, P.; Wei, W.; Lim, A.; Yun, Y. S., Biosorbents for recovery of precious metals. Bioresour Technol 2014, 160, (0), 203-12.
19. Seker Urartu Ozgur Safak, D. H. V., Material Binding Peptides for Nanotechnology. Molecules 2011, 16, 1426-1451.
20. Sarikaya, M.; Tamerler, C.; Jen, A. K. Y.; Schulten, K.; Baneyx, F., Molecular biomimetics: nanotechnology through biology. Nat Mater 2003, 2, (9), 577-585.
21. Pacardo, D. B.; Sethi, M.; Jones, S. E.; Naik, R. R.; Knecht, M. R., Biomimetic Synthesis of Pd Nanocatalysts for the Stille Coupling Reaction. ACS Nano 2009, 3, (5), 1288-1296.
22. Levy, I.; Shoseyov, O., Cellulose-binding domains: Biotechnological applications. Biotechnology Advances 2002, 20, (3–4), 191-213.
23. Wang, A. A.; Mulchandani, A.; Chen, W., Whole-Cell Immobilization Using Cell Surface-Exposed Cellulose-Binding Domain. Biotechnology Progress 2001, 17, (3), 407-411.
24. Linder, M.; Nevanen, T.; Soderholm, L.; Bengs, O.; Teeri, T. T., Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnology and Bioengineering 1998, 60, (5), 642-647.
25. Wedepohl, K. H., The Composition of the Continental-Crust. Geochim Cosmochim Ac 1995, 59, (7), 1217-1232.
26. Lox, E. S. J.; Engler, B. H., Environmental Catalysis — Mobile Sources. In Environmental Catalysis, Wiley-VCH Verlag GmbH: 2008; pp 1-117.
27. Matthey, J., Platinum 2003 interim review. 2003.
28. Moldovan, M.; Palacios, M. A.; Gomez, M. M.; Morrison, G.; Rauch, S.; McLeod, C.; Ma, R.; Caroli, S.; Alimonti, A.; Petrucci, F.; Bocca, B.; Schramel, P.; Zischka, M.; Pettersson, C.; Wass, U.; Luna, M.; Saenz, J. C.; Santamarı́a, J., Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Science of The Total Environment 2002, 296, (1–3), 199-208.
29. Moldovan, M.; Rauch, S.; Gomez, M.; Antonia Palacios, M.; Morrison, G. M., Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus aquaticus. Water Research 2001, 35, (17), 4175-4183.
30. Jarvis, K. E.; Parry, S. J.; Piper, J. M., Temporal and Spatial Studies of Autocatalyst-Derived Platinum, Rhodium, and Palladium and Selected Vehicle-Derived Trace Elements in the Environment. Environmental Science & Technology 2001, 35, (6), 1031-1036.
31. Wiseman, C., Palladium from Catalytic Converters: Exposure Levels and Human Risk. In Palladium Emissions in the Environment, Zereini, F.; Alt, F., Eds. Springer Berlin Heidelberg: 2006; pp 565-574.
32. Els, E. R.; Lorenzen, L.; Aldrich, C., The adsorption of precious metals and base metals on a quaternary ammonium group ion exchange resin. Minerals Engineering 2000, 13, (4), 401-414.
33. Iglesias, M.; Antico, E.; Salvado, V., Recovery of palladium(II) and gold(III) from diluted liquors using the resin duolite GT-73. Analytica Chimica Acta 1999, 381, (1), 61-67.
34. Rovira, M.; Hurtado, L.; Cortina, J. L.; Arnaldos, J.; Sastre, A. M., Recovery of palladium(II) from hydrochloric acid solutions using impregnated resins containing Alamine 336. Reactive and Functional Polymers 1998, 38, (2–3), 279-287.
35. OZer, A.; Ozer, D.; İbrahim Ekİz, H., The Equilibrium and Kinetic Modelling of the Biosorption of Copper(II) Ions on Cladophora crispata. Adsorption 2005, 10, (4), 317-326.
36. Dziwulska, U.; Bajguz, A.; Godlewska‐Żyłkiewicz, B., The Use of Algae Chlorella vulgaris Immobilized on Cellex‐T Support for Separation/Preconcentration of Trace Amounts of Platinum and Palladium before GFAAS Determination. Analytical Letters 2004, 37, (10), 2189-2203.
37. Kadukova, J.; Virčikova, E., Comparison of differences between copper bioaccumulation and biosorption. Environment International 2005, 31, (2), 227-232.
38. Mack, C.; Wilhelmi, B.; Duncan, J. R.; Burgess, J. E., Biosorption of precious metals. Biotechnology Advances 2007, 25, (3), 264-271.
39. Ogata, T.; Nakano, Y., Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Research 2005, 39, (18), 4281-4286.
40. Guibal, E.; Larkin, A.; Vincent, T.; Tobin, J. M., Chitosan Sorbents for Platinum Sorption from Dilute Solutions. Industrial & Engineering Chemistry Research 1999, 38, (10), 4011-4022.
41. Wang, R.; Liao, X.; Shi, B., Adsorption Behaviors of Pt(II) and Pd(II) on Collagen Fiber Immobilized Bayberry Tannin. Industrial & Engineering Chemistry Research 2005, 44, (12), 4221-4226.
42. Ho Kim, Y.; Nakano, Y., Adsorption mechanism of palladium by redox within condensed-tannin gel. Water Research 2005, 39, (7), 1324-1330.
43. Greenwood, M. J.; Ong, E.; Gilkes, R. N.; Warren, R. A. J.; Miller, C. R.; Kilburn, G. D., Cellulose-binding domains: potential for purification of complex proteins. Protein Engineering 1992, 5, (4), 361-365.
44. Ong, E.; Gilkes, N. R.; Warren, R. A. J.; Miller, R. C.; Kilburn, D. G., Enzyme Immobilization Using the Cellulose-Binding Domain of a Cellulomonas Fimi Exoglucanase. Nat Biotech 1989, 7, (6), 604-607.
45. Pandey, R. B.; Heinz, H.; Feng, J.; Farmer, B. L.; Slocik, J. M.; Drummy, L. F.; Naik, R. R., Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation. Physical Chemistry Chemical Physics 2009, 11, (12), 1989-2001.
46. Squillace, P. J.; Moran, M. J.; Lapham, W. W.; Price, C. V.; Clawges, R. M.; Zogorski, J. S., Volatile Organic Compounds in Untreated Ambient Groundwater of the United States, 1985−1995. Environmental Science & Technology 1999, 33, (23), 4176-4187.
47. Collins, C.; Laturnus, F.; Nepovim, A., Remediation of BTEX and trichloroethene. Environ. Sci. & Pollut. Res 2002, 9, (1), 86-94.
48. Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S., Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Applied Catalysis B: Environmental 2006, 69, (1–2), 115-125.
49. Carr, C. S.; Garg, S.; Hughes, J. B., Effect of Dechlorinating Bacteria on the Longevity and Composition of PCE-Containing Nonaqueous Phase Liquids under Equilibrium Dissolution Conditions. Environmental Science & Technology 2000, 34, (6), 1088-1094.
50. Lowe, M.; Madsen, E. L.; Schindler, K.; Smith, C.; Emrich, S.; Robb, F.; Halden, R. U., Geochemistry and microbial diversity of a trichloroethene-contaminated Superfund site undergoing intrinsic in situ reductive dechlorination. FEMS Microbiology Ecology 2002, 40, (2), 123-134.
51. Zhang, W.-x., Nanoscale Iron Particles for Environmental Remediation: An Overview. Journal of Nanoparticle Research 2003, 5, (3-4), 323-332.
52. Alonso, F.; Beletskaya, I. P.; Yus, M., Metal-Mediated Reductive Hydrodehalogenation of Organic Halides. Chemical Reviews 2002, 102, (11), 4009-4092.
53. Lien, H.-L.; Zhang, W.-x., Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 191, (1–2), 97-105.
54. Lowry, G. V.; Reinhard, M., Pd-Catalyzed TCE Dechlorination in Water:  Effect of [H2](aq) and H2-Utilizing Competitive Solutes on the TCE Dechlorination Rate and Product Distribution. Environmental Science & Technology 2001, 35, (4), 696-702.
55. Lowry, G. V.; Reinhard, M., Hydrodehalogenation of 1- to 3-Carbon Halogenated Organic Compounds in Water Using a Palladium Catalyst and Hydrogen Gas. Environmental Science & Technology 1999, 33, (11), 1905-1910.
56. Zhang, W.-x.; Wang, C.-B.; Lien, H.-L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today 1998, 40, (4), 387-395.
57. OECD, Test No. 221: Lemna sp. Growth Inhabition Test. OECD Publishing.
58. Ensley, H. E.; Barber, J. T.; Polito, M. A.; Oliver, A. I., Toxicity and metabolism of 2,4-dichlorophenol by the aquatic angiosperm Lemna gibba. Environmental Toxicology and Chemistry 1994, 13, (2), 325-331.
59. Fujiwara, K.; Ramesh, A.; Maki, T.; Hasegawa, H.; Ueda, K., Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. Journal of Hazardous Materials 2007, 146, (1–2), 39-50.
60. Nguyen, T. P.; Hankins, N. P.; Hilal, N., A comparative study of the flocculation behaviour and final properties of synthetic and activated sludge in wastewater treatment. Desalination 2007, 204, (1–3), 277-295.
61. Ali, I.; Gupta, V. K., Advances in water treatment by adsorption technology. Nature Protocols 2006, 1, (6), 2661-2667.
62. Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1989, 24, (4), 1-39.
63. Yuh-Shan, H., Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, (1), 171-177.
64. Ho, Y. S.; McKay, G., Pseudo-second order model for sorption processes. Process Biochemistry 1999, 34, (5), 451-465.
65. Weber, J., W. J. and Morris, J. C., Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Engrs 1963, 89, 31-59.
66. Ho, Y. S.; McKay, G., Sorption of dye from aqueous solution by peat. Chemical Engineering Journal 1998, 70, (2), 115-124.
67. Zhou, J.; Yang, S.; Yu, J.; Shu, Z., Novel hollow microspheres of hierarchical zinc–aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. Journal of Hazardous Materials 2011, 192, (3), 1114-1121.
68. Samuel, J.; Pulimi, M.; Paul, M. L.; Maurya, A.; Chandrasekaran, N.; Mukherjee, A., Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Bioresource Technology 2013, 128, (0), 423-430.

無法下載圖示 全文公開日期 2016/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2016/07/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE