簡易檢索 / 詳目顯示

研究生: Albert Daniel Saragih
Albert - Daniel Saragih
論文名稱: Investigation of Cu2SnSe3 and Mg-doped Cu2SnSe3 Thin Films for Photovoltaic Applications
Investigation of Cu2SnSe3 and Mg-doped Cu2SnSe3 Thin Films for Photovoltaic Applications
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: Shyan-Kay Jou
Shyan-Kay Jou
薛人愷
R.K. Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 91
外文關鍵詞: beloborku
相關次數: 點閱:183下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Due to the energy crisis, we rush into the solar cell research and development. Fulfillment of energy is an issue that is always covered by each of the countries, coupled with the increasing rate of world population growth the energy consumption will continue to increase. Solar cell is one of the best choices, solar cells has been studied for more than fifty years but the last decade has seen the drastic growth in the research and development in the sector and because of that, now we have so many different types of solar cells design with megawatt production capabilities. Modern solar cells design can be fabricated using different materials and can have different structure. Cu2SnSe3 (CTSe) is a potential candidate for absorber materials of solar cells.
In this study, we report the effects of doping Mg on the structural, electrical, and optical properties of these CTSe thin films for devolepment of highly efficient solar cells for long term energy production. Thin films of the CTSe and Mg-doped CTSe were sputtered with two different targets of Cu and Sn or Cu-Mg and Sn, respectively , followed by the selenization at 500-600 oC under the Se vapor. The films were characterized by FE-SEM, EDS, XRD, and Hall measurement and other analyses to explore the effects of Mg-doping with different ratios on CTSe thin film.
All the thin films CTSe and Mg-doped CTSe were deposited by DC magnetron co-sputtering at room temperature with the powers of 26 W for Cu target and 16 W for Sn target for CTSe thin films and 26 W for Cu-Mg target and 16 W for Sn target for Mg-CTSe for 1hour. A two-step selenization process was executed at 300 oC and holding period of 30 min before reaching to three different selenization temeperatures of 500 oC, 550 oC, and 600 oC. The selenization procedure had been done in Se ambient arisen from SnSe2 pellet. Almost all thin films selenized at 550 oC-selenized films had the composition closed to expected stoichiometry of Cu2SnSe3. The major XRD diffraction peaks appeared at 2θ of 26.8°, 44.8°, 53.2°, 65.5°, and 72.3° which could be attributed to (111), (220), (311), (400), and (331) planes, respectively. All the diffraction peaks of CTSe could be assigned to the crystal planes from standard structure of Cu2SnSe3 (JCPDS No.89-2879). The optical band gaps obtained by extrapolating the linear region of the absorption spectra did not significantly change. The optical absorption studies indicated a direct band gap of 1.18 ~ 1.20 eV. Undoped CTSe and Mg-0.1-CTSe films selenized at 550 oC exhibited p-type conductivity and they were n-type for Mg-0.2-CTSe and Mg-0.3-CTSe. The Hall measurements for carrier concentration and Hall mobility were 2.54×1019 cm−3 and 681 cm2V−1s−1, respectively, for undoped CTSe film, 9.08 ’ 1018 cm-3 and 71 cm2V-1s-1 for Mg-0.1-CTSe, 1.18 ’ 1019cm−3 and 11 cm2V−1s−1 for Mg-0.2-CTSe, and 1.06 ’ 1019cm−3 and 43 cm2V−1s−1 for Mg-0.3-CTSe, after selenization at 550 oC.

Abstract………………………………………………………………………………….I Table of Contents……………………………………………………………………..III List of Figures…………………………………………………………………………VI List of Tables………………………………….………………………………………..XI 1. Introduction…….…………………………….…………...…………………...…….1 1.1 Research background……………………..……………………………………...1 1.2 Solar cell overview………………………………….…………………….……..2 1.3 Solar cell market………………………………………….……….….………….3 1.4 Comparison of various thin-film solar-cell types………………….……….……6 1.4.1 Thin-film silicon solar cells………………...……………….………...…7 1.4.2 CdTe (cadmium telluride thin film solar cell)……………………………….7 1.4.3 Cu(In,Ga)Se2 (copper indium gallium diselenide solar cell)……………...8 1.4.4 Cu2ZnSnSe4 (copper zinc tin diselenide solar cell)………………………….9 1.5 Research motivation and objectives…………...………………….…………….10 2. The Basic Theory and Literature Review ……………………………..…………12 2.1 The solar cell principles ………………………….…...……………………….12 2.2 Electrical characteristics ……….…………….…………………...……………13 2.2.1 The p-n junction ………….………………...…………………………………..13 2.2.2 The ideal solar cell …………………....…………………………..…………..16 2.3 CZTSe thin film solar cell basic structure ……………...……………………..19 2.4 Developtment of CTSe thin films ……………….……..……………………...20 3. Experimental Procedure ………………………………………...……..…………31 3.1 Description of experimental instruments……...………………………………..31 3.1.1 Vacuum hot press machine…………………………...……………………….31 3.1.2 DC Magnetron sputtering system……………………………………………..31 3.1.3 High-temperature vacuum furnace…………………………………………...33 3.2 Experimental materials……………...…………………………………………34 3.2.1 The solid materials……………………………………………..……………….34 3.3 Gas specification………………………………………………………………..35 3.4 Deposition parameters………………………………………………………….36 3.5 Experimental procedures……………………………………………………….38 3.5.1 SLG (soda lime glass) substrate………………………………………………39 3.5.2 Molybdenum (Mo) deposition…………………………………………………39 3.5.3 TiN deposition…………………………………………………………………...39 3.5.4 Target fabrication for the sputtering of absorber layer…………………..40 3.5.5 Deposition condition for films grown with Cu, Cu-Mg and Sn targets….40 3.5.6 Selenization………………………………………………………………………41 3.6 Characterization techniques…………………………………………………….41 3.6.1 XRD (x-ray diffractometry……………………………………………………..41 3.6.2 FE-SEM (field emission of scanning electron microscope………………..42 3.6.3 Hall effect measurement……………………………………………………….44 3.6.4 UV–vis spectrometer……………………………………………………………46 3.6.5 Raman spectroscopy……………………………………………………………48 4. Results and Discussion……………………………………………………………...51 4.1 SEM microstructure and EDS composition analysis…………………………...51 4.2 XRD analysis of the structural properties………………………………………65 4.3 Raman spectroscopy analysis…………………………………………………..71 4.4 Optical absorption analysis……………………………………………………..73 4.5 Hall measurement analysis……………………………………………………..75 5. Conclusions…………………………………………………………………………..86 References………………………………………………………………………………88

References

1. Available from: http://www.eia.gov/todayinenergy/
2. A. R. Jha: Solar Cell Technology and Applications, CRC Press, London (2010)
3. Rahim Munir, “Growth and Characterization of Cu2ZnSnSe4 (CZTSe) thin films by sputtering of binary selenides and its selenezation”, Korea Advanced Institute of Science and Technology, Korea (2012)
4. D. Abou-Ras, T. Kirchartz, U. Rau: Advanced Characterization Techniques for Thin Film Solar Cells, WILEY-VCH Verlag GmbH & Co. KGaA, Germany (2011)
5. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”. Prog. Photovolt, Res. Appl. 19(7) (2011) 894 – 897.
6. J. Engman: Experimental Study Of Cu2znsn(Se,S)4 Thin Films For Solar Cell Applications, Uppsala Universitet Examensabete (2011).
7. Z. Lei, Q. Y. Huai, Z. Y. Long, G. X. Quan, S. D. Ming, S. C. Bin, “Facile synthesis of Cu2SnSe3 as counter electrodes for dye-sensitized solar cells”, Acta Phys, 29 (2013) 2339 - 2344.
8. D. H. Kuo, W. D. Haung, Y. S. Huang, J. D. Wu, Y. J. Lin, “Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2”, Thin Solid Films, 518 (2010) 7218 – 7221.
9. H. Zhang, M. Xie, S. Zhang, Y. Shiang, “Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors”, Journal of Alloys and Compounds, 602 (2014) 199 – 203.
10. P. Kevin, S. N. Malik, M. A. Malik, P. O’Brien, “The aerosol assisted chemical vapour deposition of SnSe and Cu2SnSe3thin films from molecular precursors”, Chem. Commun (2014).
11. D. H. Kuo, W. Wubet, “Mg dopant in Cu2SnSe3: An n-type former and a promoter of electrical mobility up to 387cm2V−1s−1”, Journal of Solid State Chemistry, 218 (2014) 44 – 49.
12. P. Wurfel: Physics of Solar Cells: From Principles to New Concepts, Wiley-WCH, Weinheim (2005).
13. T. Markvart, L. Castener: Solar Cells: Materials, Manufacture and Operation, Elsevier, Amsterdam (2005).
14. P. S. Vasekar, T. P. Dhakal, “Thin film solar cells using earth-abundant materials” (2013).
15. H. Katagiri, K. Jimbo, W.S Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, “Development of CZTS-based thin film solar cells”. Thin Solid Films, 517 (2009) 2455 – 2460.
16. G. Zoppi, I. Forbes, R.W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors”, Prog. Photovoltaics (2009).
17. K. Ito, T. Nakazawa, “Electrical and optical prpoerties of stannite type quarternary semiconductor thin-films”, J. Appl. Phys, 78(6) (1988) 2094.
18. K. M. Kim, H. Tampo, H. Shibata, S. Niki, “Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications”, Thin Solid Films, 536 (2013) 111 – 114.
19. G. S. Babu, Y. B. K. Kumar, Y. B. K. Reddy, V. S. Raja, “Growth and characterization of Cu2SnSe3 thin films”, Materials Chemistry and Physics, 96 (2006) 442 – 446.
20. M. Ibanez, D. Cadavid, U. A. Tamburini, R. Zamani, S. Gorsse, W. Li, A. M. Lopez, J. R Morante, J. Arbiol, A. Cabot, “Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals”. Journal of Materials Chemistry A, 1 (2013) 1421 – 1426.
21. G. H. Chandra, O. L. Kumar, R. P. Rao, S. Uthanna, “Influence of substrate and selenization temperatures on the growth of Cu2SnSe3 films”, Journal of Materials Science, 46 (2011) 6952 – 6959.
22. Z. Tang, Y. Nukui, K. Kosaka, N. Ashida, H. Uegaki, T. Minemoto, “Reduction of secondary phases in Cu2SnSe3 absorbers for solar cell application”, Journal of Alloys and Compounds, 608 (2014) 213 – 219.
23. C. Suryanarayana, M. G. Norton: X-ray Diffraction: A Practical Approach, Plenum Press, New York (1998).
24. B. D. Cullity: Elements Of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc, Massachusetts (2001).
25. Available from: http://mee-inc.com/sem.html
26. B. G. Yacobi: Semiconductor Materials, an Introduction to Basic Principles, Kluwer Academic (2003).
27. C. R. Brundle, C. A. Evans, S. Wilson: Encyclopedia Of Materials Characterization, Manning Publications Co, Greenwich (1992).
28. S. Wartewig: IR and Raman Spectroscopy, WILEY-VCH GmbH & Co. KGaA (2003).
29. P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, V. S. Raja, “Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3–ZnSe thin films”, Applied Surface Science, 257 (2011) 8529 – 8534.
30. A. U. Ubale, Y. S. Sakhare, M. V. Bhute, M. R. Belkhedkar, A. Singh, “Size-dependent structural, electrical and optical properties of nanostructured iron selenide thin films deposited by Chemical Bath Deposition Method”, Solid State Sciences, 16 (2013) 134 – 142.
31. G. Marcano, C. Rincon, L. M. de Chalbaud, D. B. Bracho, G. S. Perez, “Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3”, Journal of Applied Physics, 90(4) (2001) 1848 – 1853.
32. J. Fan, W. C. Cabrera, L. Akselrud, I. Antonyshyn, L. Chen, Y. Grin, “New monoclinic phase at the composition Cu2SnSe3 and its thermoelectric properties”, Inorganic Chemistry, 52 (2013) 11067 – 11074.
33. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides”, Acta Cryst, (1976) 751 – 766.
34. M. Monsefi, D. H. Kuo, “Influence of Mg doping on electrical properties of Cu(In,Ga)Se2 bulk materials”, Journal of Alloys and Compounds, 582 (2014) 547 – 551.
35. T. Maeda, S. Nakamura, T. Wada, “First principles calculations of defect formation in in-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4”, Japanese Journal of Applied Physics, 50 (2011).

無法下載圖示 全文公開日期 2020/02/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE