簡易檢索 / 詳目顯示

研究生: 費莉塔
FARIDA - RAHMAWATI PURNADIANA
論文名稱: 沉浸邊界法於均勻流經兩對轉圓柱之數值模擬運用
Numerical study on flow past two rotating cylinders using Immersed Boundary method
指導教授: 陳明志
Ming-Jyh Chern
趙修武
Shiu-Wu Chau
口試委員: 張倉榮
Tsang-Jung Chang
洪子倫
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 81
中文關鍵詞: 沉浸邊界法固體體積虛擬力虛擬熱源
外文關鍵詞: rotating cylinder, side-by-side, immersed boundary method, vortex shedding
相關次數: 點閱:444下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是針對一均勻流經兩並列的旋轉圓柱時,兩圓柱的間隙、旋轉速度對流體流動所造成的影響。透過沉浸邊界法模擬Re=100時兩圓柱在不同的旋轉速度、間隙下流體的流動現象。而圓柱旋轉的方向會使得間隙流呈現減速或加速的現象。數值預測之流場變化以渦度等高線與流線來可視化。在間隙流為減速的案例中,當超過臨界旋轉速度1.8、1.4、1.4和1.3其間隙大小分別為3、1.5、0.7和0.2時,尾流的發展會完全被抑制。在間隙流為在小間隙時尾流的發展會比在大間隙時更早達到穩定得狀態,然而在加速的間隙流時,只有大間距並在高速旋轉的情況下渦旋逸出共有反相、同相、八字形、單一渦旋與完全抑制五種型式。此外,升阻力係數的時序圖也提供來瞭解旋轉圓柱的效應。本研究並計算自相關函數並用於瞭解兩圓柱後渦旋逸出的相關性。


This study aims to investigate a uniform flow past a pair of side-by-side rotating cylinders at the moderate Reynolds number 100. The effects of gap between two cylinders, rotational direction and speed on vortex streets behind cylinders are discussed in this study. A numerical model based on the immersed boundary method is established. The direction of rotational speed results in either a decelerating or an accelerating gap flow. The effects of the decelerating and accelerating gap flow on the vortex streets are studied
as well. Numerical results are visualized using vorticity contours and stream lines. In the case of a decelerating gap flow, vortex sheddings are completely suppressed when the rotational speed is faster than the critical rotational speed which varies with respect to the gap. Nevertheless, the vortex shedding behind cylinders is suppressed in the cases with an accelerating gap flow at a fast rotation speed and in a big gap. The mode of vortex shedding varies with respect to gap and rotational speed in the decelerating and accelerating gap flow. In general there are five modes, anti-phase, in-phase, flip-flop,
single vortex shedding, suppressed mode, in the predicted flow fields. Time histories of lift and drag coefficients are provided. To estimate the relationship between two vortex systems behind cylinders, the autocorrelation function is calculated. Time histories of the autocorrelation function explain how those vortex systems interact with each other.

CONTENTS Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii NOMENCLATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 INTRODUCTION 1 2 MATHEMATICAL FORMULAE AND NUMERICAL METHOD 5 2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Numerical procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Problem descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Validation of the numerical model . . . . . . . . . . . . . . . . . . . . . . . 10 3 RESULTS AND DISCUSSION 13 3.1 Flow patterns and time history of hydrodynamic force . . . . . . . . . . . . 13 3.1.1 Decelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Accelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Instantaneous streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Decelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Accelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Characteristics of flow pattern modes . . . . . . . . . . . . . . . . . . . . . 21 3.4 Autocorrelation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1 Decelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.2 Accelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Distribution of mean pressure coefficient . . . . . . . . . . . . . . . . . . . 25 3.6 Drag and lift coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6.1 Decelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6.2 Accelerating gap flow . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 CONCLUSIONS AND FUTURE WORKS 31 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

[1] Kang, S.M. and Choi, H.C., 1999, Laminar flow past a rotating circular cylinder. Physics of Fluids 11, pp. 3312-3319.
[2] Zdravkovich, M.M., 1982. Flow induced oscillations of two interfering circular cylinders. Journal of Sound and Vibration 101, pp. 511-521.
[3] Bearman, P.W. and Weadcock, A.J., 1973, The interaction between a pair of circular cylinders normal to a stream. Journal of Fluid Mechanics 61, pp. 499-511.
[4] Chang, K. and Song, C., 1990, Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement. International Journal for Numerical Methods in Fluids 11, pp. 317-329.
[5] Farrant, T., Tan, M., and Price, W.G., 2001 A cell boundary element method applied to laminar vortex shedding from circular cylinders. Computers & Fluids 30, pp. 211-236.
[6] Meneghini, J.R., Saltara, F., Siqueira, C.L.R., and Ferrari Jr, J.A., 2001, Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures 15, pp. 327-350.
[7] Kang, S., 2003, Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Journal of Fluids and Structures 15, pp. 2486-2498.
[8] Guo, X.H., Lin, J.Z., Tu, C.X., andWang, H.L., 2009, Flow past two rotating circular cylinders in a side-by-side arrangement. Journal of Hydrodynamics 21, pp. 143-151.
[9] Yoon, H.S. , Chun H.H., Kim, J.H., and Park, I.L.R., 2009, Flow characteristics of two rotating side-by-side circular cylinders. Computers & Fluids 38, pp. 466-474.
[10] Noor, D.Z., Chern, M.J., and Horng, T.L., 2009, An Immersed boundary method to solve fluid-solid interaction problems. Computational Mechanics 466, pp. 1-7.
[11] Hirt, C.W., Nichols, B.D., and Romero, N.C., 1975, SOLA - A Numerical Solution Algorithm for Transient Fluid Flow. LA-5852 technical report, Los Alamos Scientific Laboratory, USA.
[12] Roshko, A., 1954, On the Drag and Shedding Frequency of Two Dimensional Bluff Bodies. Technical Note 3169, National Advisory Committee for Aeronautics (NACA), Washington.
[13] Tritton, D.J., 1959, Experiments on the flow past a circular cylinder at low Reynolds number. Journal of Fluid Mechanics 6, pp. 547.
[14] Pan, D., 2006, An immersed boundary method on unstructured cartesian meshes for incompressible flow with heat transfer. Numerical Heat Transfer Part B 49, pp. 277-297.
[15] Su, S.W., Lai, M.C. and Lin, C.A., 2007, An immersed boundary technique for simulating complex flows with rigid boundary. Computers & Fluids 36, pp. 313-324.
[16] Tseng, Y.H. and Ferziger, J.H., 2003, A ghost-cell immersed boundary method for flow in complex geometry. Computers & Fluids, 192, pp. 593-623.
[17] Chern, M.J., Borthwick, A.G.L., and Eatock Taylor, R., 2005, Pseudospectral element model for free surface viscous flows. International Journal for Numerical Methods in Fluids 15, pp. 517-554.
[18] Dennis, S.C.R. and Chang, G.Z., 1970, Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. Journal of Fluid Mechanics 42, pp. 471-489.
[19] Dias, A. and Majumdar, S., Numerical Computation of Flow Around a Circular
Cylinder. Technical Report, PS II Report, BITS Pilani, India.
[20] Meneghini, J.R. and Siqueira, C.L., 2001, Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures 15, pp. 327-350.
[21] Young, D.F., Munson, B.R., and Okiishi, T.H., A Brief Introduction of Fluid Mechanics. 2nd edition, John Wiley & Sons, New Jersy, USA, pp. 244.
[22] Chern, M.J , Kanna, P.R., Lu, Y.J., Cheng, I.C., and Chang, S.C., 2010, A CFD study of the interaction of oscillatory flows with a pair of side-by-side cylinders. Journal of Fluids and Structures 26, pp. 626-643.
[23] Stojkovic, D., Breuer, M., and Durst, F., 2002, Effect of high rotation rates on the laminar flow around a circular cylinder. Physics of Fluids 14, pp. 3160-3178.
[24] Mittal, S. and Kumar, B., 2003, Flow past a rotating cylinder. Journal of Fluid Mechanics 476, pp. 303-334.
[25] Zhou, Y., Wang, Z.J., So, R.M.C., Xu, S.J. and Jin, W., 2001, Free vibrations of two side-by-side cylinders in a cross-flow. Journal of Fluid Mechanics 443, pp. 197-229.

QR CODE