簡易檢索 / 詳目顯示

研究生: 陳長煌
Chang-Huang Chen
論文名稱: 精英導向粒子群優法及其在經濟調度上之應用
Personal best oriented particle swarm optimizer and its application to economic dispatch problems
指導教授: 葉勝年
Sheng-Nian Yeh
黃仲欽
Jonq-Chin Hwang
口試委員: 潘晴財
Ching-Tsai Pan
劉志文
Chih-Wen Liu
陳建富
Jiann-Fuh Chen
謝冠群
Guan-Chyun Hsieh
蘇慶宗
Ching-Tzong Su
劉添華
Tian-Hua Liu
吳瑞南
Ruay-Nan Wu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 166
中文關鍵詞: 差分方程式經濟調度粒子群優法
外文關鍵詞: difference equation, economic dispatch, particle swarm optimization
相關次數: 點閱:290下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒子群優法(particle swarm optimization-PSO)是近年來發展出來的一種解最佳化問題的演算法,並已成功應用在許多工程與科學問題上。雖然它有許多的優點,但並不保證都能求得全域最佳解。許多的研究者不斷提出各種策略,試圖改善其性能,但都免不了要加入一些邏輯判斷與.數學運算步驟,這不僅增加演算法的複雜性,也增加執行時間。

    本論文提出二種新型粒子群優法,分別稱為精英粒子群優法(personal best oriented particle swarm optimizer-PPSO)與簡化精英粒子群優法(simplified personal best oriented particle swarm optimizer-SPPSO)。經驗顯示,前者對大部分測試的驗證函數(benchmark functions),都能獲得比傳統粒子群優法更好的解,收斂速度也比較快。雖然後者用於求解單極點問題時,解的品質沒有PSO或PPSO好,但應用於求解多極點(multimodal)函數時,卻有極佳的表現。這兩種演算法都沒有加入額外的數學或邏輯運算,不會增加額外的計算負擔,因此具有與傳統粒子群優法一樣容易實現的優點。此外,SPPSO使用較少的參數,可以減輕參數調校的問題。

    為了解精英粒子群優法的內在特性及動態行為,本文提出以一階差分方程式(first-order difference equation)來描述精英粒子群優法的數學模型,並據以決定參數的設定。理論分析顯示精英粒子群優法與傳統粒子群優法都以環繞某一隨機加權中心的方式,搜尋最佳解,此一隨機加權中心係搜尋過程中所發現的全域最佳解(global best solution)與個別最佳解(personal best solution)或稱精英解的線性組合,但兩者的組合方式有明顯的不同。透過搜尋軌跡的觀察,可以證實此一現象。

    同時,為了進一步驗證本文所提出方法的可行性與能力,除使用高維度的驗證函數來測試精英粒子群優法外,並應用於電力系統的經濟調度問題(economic power dispatch problems),結果顯示精英粒子群優法確實能獲得比傳統粒子群優法更低的調度成本。


    The particle swarm optimization (PSO) is a newly developed optimization problem solver, which has been successfully applied to various engineering optimization problems. Although it has been shown that it performs well on many optimization problems, it is occasionally trapped in local optimum. Many attempts have been tried to make it more robust by using new operations or hybridizing with other algorithms to avoid premature. However, they inevitably introduce extra mathematical and/or logical computations which complicate original simplicity of PSO and increase computation time.
    Two variants of particle swarm optimization, called personal best oriented particle swarm optimizer (PPSO) and simplified PPSO (SPPSO), are proposed in this dissertation. Empirical studies demonstrate that, in general, PPSO outperforms PSO both in computation quality and convergent speed. As for SPPSO, it performs extremely well for multimodal benchmark functions, although it is not as good as PSO and PPSO in unimodal functions. Moreover, without incurring any new computational and logical operations, PPSO and SPPSO are as simple as PSO, reserving the merit of easy implementation. Meanwhile, SPPSO use fewer parameters which will release some burden in choosing and tuning parameters.
    To reveal the intrinsic behavior of PPSO and SPPSO, mathematical models to characterize PPSO and SPPSO are developed in this dissertation. It is shown that a first-order difference equation is sufficient to describe the behavior of PPSO and SPPSO. Theoretical analysis depicted that a particle stochastically moves within a region in real space. On each dimension, the center of the region approximately equals to a random weighted mean of the best positions found by an individual and its neighbors. This phenomenon is observed and verified from the real trajectory profiles demonstrated in this dissertation.
    In order to verify the feasibility and capability of PPSO and SPPSO, in addition to testing on several high dimensional benchmark functions, they are also applied to economic power dispatch problems with various kinds of cost functions as well as different constraints. Experimental results demonstrate that, for most of the problems, PPSO and SPPSO indeed can obtain better solutions than PSO.

    Contents Abstract in English ------------------------------------I Abstract in Chinese ------------------------------------II Acknowledgement ----------------------------------------III Contents -----------------------------------------------V Notations ----------------------------------------------IV Lists of Figures ---------------------------------------XII Lists of Tables ----------------------------------------XV Chapter 1 Introduction ---------------------------------1 1.1 Motivation -----------------------------------------1 1.2 Objectives -----------------------------------------2 1.3 Methodology ----------------------------------------2 1.4 Contribution ---------------------------------------3 1.5 Organization of the dissertation -------------------4 Chapter 2 Background -----------------------------------5 2.1 Formulation of Optimization problems----------------5 2.2 Population based optimization algorithms------------6 2.2.1 Genetic algorithm---------------------------------7 2.2.2 Evolutionary programming--------------------------8 2.2.3 Evolution strategy--------------------------------9 2.2.4 Differential evolution ---------------------------10 2.3 Particle swarm optimization ------------------------11 2.4 Economic power dispatch problems -------------------15 2.5 Summary ------------------------------------------- 17 Chapter 3 Particle Swarm Optimization ------------------19 3.1 Original particle swarm optimization ---------------19 3.2 Inertia weight PSO ---------------------------------22 3.3 Constriction type PSO ----------------------------- 23 3.4 Analysis of PSO ----------------------------------- 24 3.4.1 Preliminary ------------------------------------- 24 3.4.1.1 Definition of convergence ----------------------24 3.4.1.2 Expectation value of uniform distributed random number -------------------------------------------------25 3.4.2 Analysis deterministic model of PSO --------------25 3.4.3 Convergent property of PSO ---------------------- 27 3.4.4 Trajectory of PSO ------------------------------- 33 3.5 Summary ------------------------------------------- 38 Chapter 4 Personal Best Oriented Particle Swarm Optimization (PPSO) ----------------------------------- 40 4.1 Constant inertia PPSO ----------------------------- 40 4.2 Simplified PPSO ----------------------------------- 42 4.3 Constriction type PPSO ---------------------------- 43 4.4 Linear decreasing inertia weight PPSO ------------- 43 4.5 Trajectory -----------------------------------------44 4.6 A sample PSO evolution experiment ----------------- 55 4.7 Summary ------------------------------------------- 62 Chapter 5 Theoretical Analysis of PPSO ---------------- 63 5.1 Simple PPSO: one particle and one dimension case ---63 5.2 Deterministic model of PPSO ------------------------64 5.2.1 Convergence property of the deterministic PPSO ---65 5.2.2 Step size ----------------------------------------67 5.2.3 Parameters selection -----------------------------70 5.2.4 Stability ----------------------------------------73 5.2.5 Equilibrium point---------------------------------73 5.3 Stochastic PPSO ------------------------------------75 5.3.1 Convergent property of the stochastic PPSO -------75 5.3.2 Step size ----------------------------------------77 5.3.3 Parameter selection for stochastic PPSO ----------78 5.3.3.1 Inertia weight ---------------------------------78 5.3.3.2 Acceleration coefficient -----------------------80 5.3.4 Equilibrium point --------------------------------81 5.4 The Simplified PPSO --------------------------------81 5.5 Testing on benchmark functions----------------------82 5.5.1 Benchmark functions ------------------------------82 5.5.2 Methodology --------------------------------------83 5.5.3 Performance comparison ---------------------------84 5.5.3.1 Constant inertia weight PPSO -------------------84 5.5.3.2 Constriction type PPSO -------------------------92 5.5.3.3 Linear decreasing inertia weight PPSO ----------94 5.6 Summary --------------------------------------------96 Chapter 6 Application of PPSO to Economic Dispatch Problems -----------------------------------------------97 6.1 Introduction ---------------------------------------97 6.2 Basic formulation of economic dispatch problems ----97 6.2.1 Cost function ------------------------------------98 6.2.1.1 Multiple-fuel options --------------------------98 6.2.1.2 Valve-point effect -----------------------------100 6.2.2 Transmission loss---------------------------------101 6.2.3 Ramp rate limits----------------------------------101 6.2.4 Prohibited zone-----------------------------------102 6.2.5 Other constraints --------------------------------102 6.3 Adapting PPSO and SPPSO to comply with ED problems -102 6.4 Case studies ---------------------------------------105 6.4.1 Case 1: 40 generator system-----------------------106 6.4.2 Case 2 : Ten generators with multiple fuel options107 6.4.3 Case 3 Thirteen units with valve-point effects ---112 6.4.4 Case 4 Ten units with multiple fuel options and valve-point effects ------------------------------------115 6.4.5 Case 5 Twenty generators accounting for transmission loss ---------------------------------------------------117 6.4.6 Case 6 Six generators with prohibited zone and ramp rate constraints ---------------------------------------120 6.4.7 Case 7 Fifteen generators with prohibited zone and ramp rate constraints ----------------------------------121 6.5 Summary --------------------------------------------124 Chapter 7 Conclusions ----------------------------------125 7.1 Summary of chapters --------------------------------125 7.2 Conclusions ----------------------------------------126 7.2 Future research ------------------------------------127 Reference --------------------------------------------- 129 Appendices ---------------------------------------------137 A Landscape view of benchmark functions ----------------137 A.1 Landscape view of Sphere function ------------------137 A.2 Landscape view of Rosenbrock function---------------137 A.3 Landscape view of Ackley function-------------------138 A.4 Landscape view of Griewank function-----------------138 A.5 Landscape view of Rastrigin function----------------139 A.6 Landscape view of Schwefel function ----------------139 B Generators data and transmission loss coefficients ---140 B.1 Unit data and cost coefficient for a 40-unit case of 40-unit system------------------------------------------140 B.2 Unit data and cost coefficients for multiple fuel options of a 10-unit case ------------------------------141 B.3 Unit data and cot coefficients of a 13-unit case ---142 B.4 Unit data of a 10-unit system with multiple-fuel and valve-point effects-------------------------------------143 B.5 Coefficients of transmission loss of a 20-unit case 144 B.6 Coefficients of transmission loss of a 6-unit case -144 B.7 Coefficients of transmission loss of a 15-unit case 145

    [1]K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York, 2001.
    [2]T. Bäck, U. Hammel and H. P. Schwefel, “Evolutionary computation: comments on the history and current state”, IEEE Transaction on Evolutionary Computation, vol.1, no.1, 1997, pp.3-17.
    [3]J. Kennedy and R. C. Eberhart, “Particle swarm optimization”, IEEE International Conference on Neural Network, vol.4, 1995, pp.1942-1948.
    [4]R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, IEEE 6th International Symposium on Micro Machine and Human Science, 1995, pp.39-43.
    [5]A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, 2nd Edition, John Wiley, New York, USA, 1996.
    [6]H. Saadat, Power System Analysis, McGraw-Hill, New York, USA, 1999.
    [7]N. S. Rau, Optimization Principles, IEEE Press, Piscataway, NJ, USA, 2003.
    [8]D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley Publishing Company, New York, USA, 1984.
    [9]T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York, USA, 1996.
    [10]D. Goldberg, Genetic Algorithms in search, optimization and Machine Learning, Addison-Wesley, New York, USA, 1989.
    [11]M. Gen and R. Cheng, Genetic algorithms and engineering design, John Wiley and Sons, Inc., New York, USA, 1997
    [12]Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, New York, USA, 1999.
    [13]T. Bäck, D. B. Fogel and Z. Michalewicz, Evolutionary Computation 2, Edited, Institute of Physics Publishing, 2000.
    [14]C. Jacob, Illustrating Evolutionary Computation with Mathematica, Academic Press, San Diego, USA, 2001.
    [15]A. E. Eiben, R. Hinterding and Z. Michalewicz, “Parameter control in evolutionary algorithms”, IEEE Transaction on Evolutionary Computation, vol.3, no.2, 1999, pp.124-141.
    [16]R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces”, Journal of global optimization, vol.11, 1997, pp.341-359.
    [17]V. L. Huang, A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for constrained real-parameter optimization”, 2006 IEEE Congress on Evolutionary Computation, 2006, pp.17-24.
    [18]Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer”, Proceedings of the Congress on Evolutionary Computation, 1998, pp.69-73.
    [19]R. Mendes, J. Kennedy and J. Neves, “The fully informed particle swarm: simpler, maybe better”, IEEE Transaction on Evolutionary Computation, vol.8, no.3, 2004, pp.204-210.

    [20]Y. Shi and R. C. Eberhart, “Parameters selection in particle swarm optimization“, Proceeding of the 7th Conference on Evolutionary Programming, New York, 1998, pp.591-600.
    [21]Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization”, Proceedings of the Congress on Evolutionary Computation, vol.3, 1999, pp.1945-1950.
    [22]Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization”, Proceeding of the Congress on Evolutionary Computation, 2001, pp.101-106.
    [23]Y. L. Zheng, L. H. Ma, L.Y. Zhang and J. X. Qian, “On the convergence analysis and parameter selection in particle swarm optimization”, Proceeding of the second International Conference on Machine Learning and Cybernetics, 2003, pp.1802-1807.
    [24]G. Chen, X. Huang, J. Jia and Z. Min, “Natural exponential inertia weight strategy in particle swarm optimization”, Proceeding of the 6th World Congress on Intelligent Control and Automation, 2006, pp.3672-3675.
    [25]A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients”, IEEE Transaction on Evolutionary Computation, vol.8, no.3, 2004, pp.240-255.
    [26]M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization”, Proceedings of the Congress on Evolutionary Computation, 1999, pp.1951-1957.
    [27]R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization”, Proceeding of the Congress on Evolutionary Computation, 2000, pp.84-88.
    [28]J. Kennedy, “The particle swarm: social adaptation of knowledge”, IEEE International Conference on Evolutionary Computation, 1997, pp.303-308
    [29]J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance”, Proceeding of the IEEE Congress on Evolutionary Computation, 1999, pp.1931-1938.
    [30]J. Kennedy and R. Mendes, “Population structure and particle swarm performance”, Proceeding of the IEEE Congress on Evolutionary Computation, 2002, pp.1671-1676.
    [31]J. Kennedy and R. Mendes, “Neighborhood topologies in fully informed and best-of-neighborhood particle swarms”, IEEE Transaction on Systems, Man, and Cybernetics – Part C: Applications and Reviews, vol.36, no.4, 2006, pp.515-519.
    [32]P. N. Suganthan, “Particle swarm optimizer with neighborhood operator”, Proceedings of the Congress on Evolutionary Computation, 1999, pp.1958-1962.
    [33]S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer”, The Congress of Evolutionary Computation, CEC’03, vol.2, 2003, pp.770-776.
    [34]S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer and its adaptive variant”, IEEE Transaction on System, Man and Cybernetics, Part-B, vol.35, no.6, 2005, pp.1272-1282.
    [35]K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm optimization scheme”, Proceeding of the International Conference of Computational Methods in Sciences and Engineering, 2004, pp.868-873.

    [36]T. Peram, K. Veeramachaneni, and C. K. Mohan, “Fitness-distance-ratio based particle swarm optimization”, Proceedings of the Swarm Intelligence Symposium, 2003, pp.174-181.
    [37]M. S. Arumugam, A. Chandramohan and M. V. C. Rao, “Competitive approaches to PSO algorithm via new acceleration coefficient variant with mutation operators”, Proceeding of the Sixth International Conference on Computational Intelligence and Multimedia Applications, 2005, pp.225-230.
    [38]F. van den Bergh and A. P. Engelbrecht, ”A cooperative approach to particle swarm optimization”, IEEE Transaction on Evolutionary Computation, vol.8, no.3, 2004, pp.225-239.
    [39]J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions”, IEEE Transaction on Evolutionary Computation, vol.10, no.3, 2006, pp.281-295.
    [40]S. Das, et al., “Adding local search to particle swarm optimization”, IEEE Congress on Evolutionary Computation, 2006, pp.428-433.
    [41]S. K. S. Fan, Y. C. Liang and E. Zahara, “Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions”, Engineering Optimization, vol.36, no.4, 2004, pp.401-418.
    [42]P. J. Angeline, “Using selection to improve particle swarm optimization”, Proceedings of the IEEE Congress on Evolutionary Computation, 1998, pp.84-89.
    [43]V. Miranda and N. Fonseca, “EPSO – Evolutionary particle swarm optimization, a new algorithm with applications in power systems”, IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, vol.2, 2002, pp. 745-750.
    [44]A. Stacey, M. Jancic and I. Grundy, “particle swarm optimization with mutation”, IEEE Congress on Evolutionary Computation, vol.2, 2003, pp.1425-1430.
    [45]N. Higashi and H. Iba, “Particle swarm optimization with Gaussian mutation”, Proceedings of the IEEE Swarm Intelligence Symposium, 2003, pp.72-79.
    [46]P. S. Andrews, “An investigation into mutation operators for particle swarm optimization”, IEEE Congress on Evolutionary Computation, 2006, pp.1044-1051.
    [47]J. Kennedy, “The behavior of particle”, Proceeding of the 7th Annual Conference on Evolutionary Programming, 1998, pp.581-589.
    [48]E. Ozcan and C. K. Mohan, “Particle swarm optimization: surfing the waves”, Proceeding of the IEEE Congress on Evolutionary Computation, 1999, pp.1939-1944.
    [49]K. Yasuda, A. Ide and N. Iwasaki, “Adaptive particle swarm optimization”, IEEE International Conference on Systems, Man and Cybernetics, vol.2, 2003, pp.1554-1559.
    [50]I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection”, Information Processing Letters, vol.85, 2003, pp.317-325.
    [51]B. Brandstatter and U. Baumgartner, “Particle swarm optimization – mass-spring system analogon”, IEEE Transaction on Magnetics, vol.38, no.2, Part 1, 2002, pp.997-1000.
    [52]M. Clerc and J. Kennedy, “The particle swarm – explosion, stability and convergence in a multidimensional complex space”, IEEE Transaction on Evolutionary Computation, vol.6, no.1, 2002, pp.58-73.

    [53]F. van den Bergh and “Analysis of particle swarm optimization”, Ph.D. dissertation, University of Pretoria, Pretoria, South Africa, 2002.
    [54]M. Jiang, Y. P. Luo and S. Y. Yang, “Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm”, Information Processing Letters, vol.102, 2007, pp.8-16.
    [55]V. Kadirkamanathan, K. Selvarajah and P. J. Fleming, “Stability analysis of the particle dynamics in particle swarm optimizer”, IEEE Transaction on Evolutionary Computation, 2006, pp.1-11.
    [56]C. E. Lin and G. L. Viviani, “Hierarchical economic dispatch for piecewise quadratic cost functions”, IEEE Transaction on Power Apparatus and Systems, vol.PAS-103, no.6, 1984, pp.1170-1175.
    [57]Z. X. Liang and J. D. Glover, “A zoom feature for a dynamic programming solution to economic dispatch including transmission losses”, IEEE Transaction on Power Systems, vol.7, no.2, 1992, pp.544-550.
    [58]A. Jiang and S. Ertem, “Economic dispatch with non-monotonically increase incremental cost units and transmission system losses”, IEEE Transaction on Power Systems, vol.10, no.2, 1995, pp.891-897.
    [59]J. F. Chen, H. C. Chen and C. L. Huang, “The uniqueness of the local minimum for power economic dispatch problems”, Electric Power Systems Research, vol.32, 1995, pp.187-193.
    [60]C. A. Roa-Sepulveda and M. Herrera, “A solution to the economic dispatch problem using decision tress”, Electric Power Systems Research, vol.56, 2000, pp.255-259.
    [61]K. P. Wong and C. C. Fung, “Simulated annealing based economic dispatch algorithm”, IEE Proceedings-C, vol.140, no.6, 1993, pp.509-515.
    [62]K. P. Wong, Y. W. Wong, “Genetic and genetic/simulated annealing approaches to economic dispatch”, IEE Proceedings Generation, Transmission and Distribution, vol.141, no.5, 1994, pp.507-513.
    [63]G. B. Sheble and K. Brittig, “Refined Genetic algorithm – economic dispatch example”, IEEE Transaction on Power Systems, vol.10, no.1, 1995, pp.117-124.
    [64]P. H. Chen and H. C. Chang, “Large-scale economic dispatch by genetic algorithm”, IEEE Transaction on Power Systems, vol.10, no.4, 1995, pp.1919-1925.
    [65]Y. H. Song and C. S. V. Chou, “Advanced engineered-conditioning genetic approach to power economic dispatch”, IEE Proceedings Generating, Transmission and Distribution, vol.144, no.3, 1997, pp.285-292.
    [66]T. Yalcinoz and M. J. Short, “Large-scale economic dispatch using an improved Hopfield neural network”, IEE Proceedings Generation, Transmission and Distribution, vol.144, no.2, 1997, pp.181-185.
    [67]C. T. Su and C. T. Lin, “New approach with Hopfield modeling framework to economic dispatch”, IEEE Transaction on Power Systems, vol.15, no.2, 2000, pp.541-545.
    [68]T. Yalcinoz, B. J. Cory and M. J. Short, “Hopfield neural network approaches to economic dispatch problems”, Electrical Power and Energy Systems, vol.23, 2001, pp.435-442.
    [69]P. Aravindhababu and K. R. Nayar, “Economic dispatch based on optimal lambda using radial basic function network”, Electric Power and Energy Systems, vol.24, 2002, pp.551-556.
    [70]J. P. Chiou, “Variable scaling hybrid differential evolution for large-scale economic dispatch problems”, Electric Power Systems Research, vol.77, 2007, pp.212-218.
    [71]B. K. Panigrahi, S. R. Yadav, S. Agrawal and M. K. Tiwari, “A clonal algorithm to solve economic load dispatch”, Electric Power Systems Research, vol.77, 2007, pp.1381-1389.
    [72]J. Cai, et al., “Chaotic ant swarm optimization to economic dispatch”, Electric Power Systems Research, vol.77, 2007, pp.1373-1380.
    [73]S. Khamsawang, C. Boonseng and S. Pothiya, “Solving the economic dispatch problem with tabu search algorithm”, Proceeding of the IEEE International Conference on Industrial Technology, ICIT02, vol.1, 2002, pp.274-278.
    [74]G. Kumaran and V. S. K. Mouly, “Using evolutionary computation to solve economic load dispatch problem”, Proceedings of the Congress on Evolutionary Computation, 2001, pp.296-301.
    [75]N. Sinha, R. Chakrabarti and P. K. Chattopadhyay, “Fast evolutionary programming techniques for short-term hydrothermal scheduling”, IEEE Transaction on Power Systems, vol.18, no.1, 2003, pp.214-220.
    [76]D. N. Jeyakumar, T. Jayabarathi and T. Raghunathan, “Particle swarm optimization for various type of economic dispatch problems”, Electrical Power and Energy Systems, vol.28, 2006, pp.36-42.
    [77]Z. L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints”, IEEE Transaction on Power Systems, vol.18, no.3, 2003, pp.1187-1195.
    [78]Y. H. Moon, et al., ”A new economic dispatch algorithm for thermal unit generation scheduling in power system”, IEEE Power Engineering Society Winter Meeting, vol.2, 2000, pp.1034-1039.
    [79]T. Adhinarayanan and M. Sydulu, “Particle swarm optimization for economic dispatch with cubic fuel cost function“, IEEE Region 10 Conference, TENCON 2006, Nov. 2006, pp.1-4.
    [80]J. O. Kim, D. J. Shin, J. N. Park and C. Singh, “Atavistic genetic algorithm for economic dispatch with valve point effect”, Electric Power Systems Research, vol.62, 2002, pp.201-207.
    [81]S. H. Ling, H. K. Lam, F. H. F. Leung and Y. S. Lee, “Improved genetic algorithm for economic load dispatch with valve-point loadings”, Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society, vol.1, 2003, pp.442-447.
    [82]H. T. Yang, P. C. Yang and C. L. Huang, “Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions”, IEEE Transaction on Power Systems, vol.11, no.1, 1996, pp.112-118.
    [83]N. Sinha, R. Chakrabarti and P. K. Chattopadhyay, “Evolutionary programming techniques for economic load dispatch”, IEEE Transaction on Evolutionary Computation, vol.7, no.1, 2003, pp.83-93.
    [84]G. Ravi, R. Chakrabarti and C. Shoudhuri, “Nonconvex economic dispatch with heuristic load patterns using improved fast evolutionary program”, Electric Power Components and Systems, vol.34, 2006, pp.37-45.
    [85]S. Khamsawang, S. Pothiya and C.Boonseng, “Distributed tabu search algorithm for solving the economic dispatch problem”, Proceedings of the IEEE Region 10 Annual International Conference, 2004, pp.484-487.
    [86]W. M. Lin, F. S. Cheng and M. T. Tsay, “An improved Tabu search for economic dispatch with multiple minima”, IEEE Transaction on Power Systems, vol.17, no.1, 2002, pp.108-112.
    [87]W. M. Lin, H. J. Gow and M. T. Tsay, “A partition approach algorithm for economic dispatch with valve-point effect”, IEEE Transmission and Distribution Conference & Exhibition: Asia and Pacific, 2005, pp.1-6.
    [88]J. B. Park, K. S. Lee, J.R. Shin and K. Y. Lee, “A particle swarm optimization for economic dispatch with nonsmooth cost functions”, IEEE Transaction on Power Systems, vol.20, no.1, 2005, pp.34-42.
    [89]Y. H. Hou, L. J. Lu, X. Y. Xiong and Y. W. Wu, “Economic dispatch of power systems based on a modified particle swarm optimization algorithm”, IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, 2005, pp.1-6.
    [90]L. L. Lai, et al., “Particle swarm optimization for economic dispatch of units with non-smooth input-output characteristic functions”, Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, 2005, pp.499-503.
    [91]T. A. A. Victoire, and A. E. Jeyakumar, “Hybrid PSO-SQP for economic dispatch with valve-point effect”, Electric Power Systems Research, vol.71, 2004, pp.51-59.
    [92]L. D. S. Coelho and V. C. Mariani, “Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect”, IEEE Transaction on Power Systems, vol.21, no.2, 2006, pp.989-996.
    [93]D. He, F. Wang and Z. Mao, “A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect”, Electric Power Energy Systems, vol.30, 2008, pp.31-38.
    [94]K. P. Wong and Suzannah Y. W. Wong, “Hybrid genetic/simulated annealing approach to short-term multiple-fuel constrained generation scheduling”, IEEE Transaction on Power Systems, vol.12, no.2, 1997, pp.776-784.
    [95]J. R. Won and Y. M. Park, “Economic dispatch solution with piecewise quadratic cost functions using improved genetic algorithm”, Electrical Power and Energy Systems, vol.25, 2003, pp.355-361.
    [96]C. L. Chiang and C. T. Su, “Adaptive improved genetic algorithm for the economic dispatch of units with multiple fuel options”, International Journal of Cybernetics and Systems, vol.36, 2005, pp.687-704.
    [97]S. Baskar, P. Subbaraj and M. V. C. Rao, “Hybrid real coded genetic algorithm solution to economic dispatch problem”, Computers and Electrical Engineering, vol.29, 2003, pp.407-419.
    [98]K. Y. Lee A. S. Yome, J.H. Park, “Adaptive Hopfield neural networks for economic load dispatch”, IEEE Transaction on Power Systems, vol.13, no.2, 1998, pp.519-526.
    [99]S. C. Lee and Y. H. Kim, “An enhanced Lagrangian neural network for the ELD problems with piecewise quadratic cost functions and nonlinear constraints”, Electric Power Systems Research vol.60, 2002, pp.167-177.
    [100]A. El-Gallad, M. El-Hawary, A. A. Sallam and A. Kalas, “Swarm intelligence for hybrid cost dispatch Problem”, 2001 Canadian Conference on Electrical and Computer Engineering, vol.2, 2001, pp.753-757.

    [101]T. Jayabarathi and G. Sadasivam, “Evolutionary programming-based economic dispatch for units with multiple fuel options”, European Transaction on Electrical Power, vol.10, no.3, 2000, pp.167-170.
    [102]C. L. Chiang, “Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels”, IEEE Transaction on Power Systems, vol.20, no.4, 2005, pp.1690-1699.
    [103]A. Immanuel and K. Thanushkodi, “A new particle swarm optimization solution to nonconvex economic dispatch problems”, IEEE Transaction on Power Systems, vol.22, no.1, 2007, pp.42-51.
    [104]S. O. Orero and M. R. Irving, “Economic dispatch of generators with prohibited operating zones: a genetic approach”, IEE Proceedings Generation, Transmission and Distribution, vol.143, 1996, pp.529-533.
    [105]W. M. Lin, F. Sheng and M. T. Tsay, “Nonconvex economic dispatch by integrated artificial intelligence”, IEEE Transaction on Power Systems, vol.16, no.2, 2001, pp.307-311.
    [106]T. Jayabarathi, G. Sadasivam and V. Ramachandran, “Evolutionary programming based economic dispatch of generators with prohibited operating zones”, Electric Power Systems Research, vol.52, 1999, pp.261-266.
    [107]P. Somasundaram, K. Kuppusamy and R. P. K. Devi, “Economic dispatch with prohibited operating zones using fast computation evolutionary programming algorithm”, Electric Power Systems Research vol.70, 2004, pp.245-252.
    [108]A. Pereira-Neto, C. Unsihuay and O. R. Saavedra, “Efficient evolutionary strategy optimization procedure to solve the nonconvex economic dispatch problem with generator constraints”, IEE Proceedings, Generation, Transmission and Distribution, vol.152, no.5, 2005, pp.653-660.
    [109]A. El-Gallad, M. El-Hawary, A. Sallam and A. Kalas, “Particle swarm optimizer for constrained economic dispatch with prohibited operating zones”, Proceeding of the 2002 IEEE Canadian Conference on the Electrical & Computing Engineering, 2002, pp.78-81.
    [110]S. K. Wang, J. P. Chiou and C. W. Liu, “Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm”, IET Generation, Transmission and Distribution, vol.1, no.5, 2007, pp.794-803.
    [111]L. G. Papageorgiou, and E. S. Fraga, “A mixed integer quadratic programming formulation for the economic dispatch of generators with prohibited operating zones”, Electric Power Systems Research, vol.77, 2007, pp.1292-1296.
    [112]M. A. Abido, “Optimal power flow using particle swarm optimization”, International Journal of Electrical Power Energy System, vol.24, no.7, pp.563-571.
    [113]M. A. Abido, “Optimal design of power system stabilizers using particle swarm optimization”, IEEE Transaction on Energy Conversion, vol.17, no.3, 2002, pp.406-413.
    [114]S. Naka, T. Genji, T. Yura and Y. Fukuyama, “A hybrid particle swarm optimization for distribution state estimation”, IEEE Transaction on Power Systems, vol.18, no.1, 2003, pp.60-68.
    [115]Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system”, IEEE Transaction on Energy Conversion, vol.19, no.2, 2004, pp.384-391.
    [116]M. P. Wachowiak, et al., ”An approach to multimodal biomedical image registration utilizing particle swarm optimization”, IEEE Transaction on Evolutionary Computation, vol.8, no.3, 2004, pp.289-301.
    [117]X. M. Yu, X. Y. Xiong, and Y. W. Wu, “A PSO-based approach to optimal capacitor placement with harmonic distortion consideration”, Electric Power Systems research, vol.71, no.1, 2004, pp.27-33.
    [118]C. Y. Chen, H. M. Feng, and F. Ye, “Automatic particle swarm optimization clustering algorithm”, International Journal of Electrical Engineering, vol.13, no.4, 2006, pp.379-387.
    [119]J. H. Seo, et al., “Multimodal function optimization based on particle swarm optimization”, IEEE Transaction on Magnetics, vol.42, no.4, 2006, pp.1095-1098.
    [120]A. A. EL-Dib, H. K. M. Youssel, M. M. EL-Metwally and Z. Osman, “Optimum var sizing and allocation using particle swarm optimization”, Electric Power Systems Research, vol.77, 2007, pp.965-972.
    [121]S. K. Fan, Y. C. Liang and E. Zahara, “Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions”, Engineering Optimization, vol.36, no.4, 2004, pp.401-418.
    [122]D. Corne, M. Dorigo and F. Glover, editors, New Ideas in Optimization, McGraw-Hill, 1999.
    [123]Y. Tan, J. Zeng and H. Gao, “Analysis of particle swarm optimization based on discrete time linear system theory”, Proceeding of the 5th World Congress on Intelligent Control and Automation, 2004, pp.2210-2213.
    [124]J. Kennedy, “Bare bones particle swarms”, Proceedings of the IEEE Swarm Intelligence Symposium, 2003, pp.80-87.
    [125]J. Kennedy, “Probability and dynamics in the particle swarm”, Proceedings of the IEEE Congress on Evolutionary Computation, 2004, pp.340-347.

    QR CODE