簡易檢索 / 詳目顯示

研究生: 高薇湄
Wei-mei Kao
論文名稱: 波導間距與寬度對高分子非對稱布拉格耦合濾波器之影響
The effect of the waveguide gap and asymmetric on the coupling efficiency of polymer asymmetric Bragg couplers
指導教授: 趙振綱
Ching-kong Chao
何智廷
Chi-ting HO
口試委員: 李維楨
Wei-chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 微模轉印技術軟式微影技術全像術干涉微影技術非對稱布拉格耦合濾波器元件
外文關鍵詞: soft lithography, micro molding, asymmetric Bragg coupler, holographic interference techniques
相關次數: 點閱:183下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將利用全像術干涉微影技術、軟式微影技術以及微模轉印技術在雙通道高分子波導濾波器上製作非對稱布拉格耦合元件(asymmetric Bragg coupler based filters, ABC),並得到兩平行波導間寬度,及其非對稱性對耦合效率之影響。
    實驗中使用全像術干涉微影技術與軟式微影技術製作高分子光柵元件;接著利用高分子光柵元件配合黃光微影之厚膜光阻製程與軟式微影技術,製作高分子布拉格光柵波導元件。
    最後以原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)與光學量測方法觀察及紀錄實驗之結果,而光學傳輸特性可由Tunable Laser光頻譜分析儀所量測得知。
    本研究成功製作非對稱布拉格耦合濾波器元件,在穿透及自我反射的布拉格波長中,以-3dB介質損耗為準,其傳輸垂度大約在-16.4和-11.5dB處,而且在3dB的傳輸頻寬大約是0.6和0.5nm;當傳輸光頻譜重疊時,表示兩個單一的波導其等效折射率的差小於0.002。


    In this work, we successfully developed a process to fabricate dual-channel polymeric waveguide filters based on an asymmetric Bragg coupler (ABC) using holographic interference techniques, soft lithography and micro molding. We also obtain the influence of the waveguide gap and asymmetric on the coupling efficiency of polymer asymmetric Bragg coupler.
    In this experiment, the grating structure on a polymer is fabricated first using holographic interference techniques and micro molding processes. Next, we will fabricate an asymmetric Bragg coupler device through photolithography process and soft lithography on a thick film photoresister.
    Finally, the grating profiles of the devices were observed using SEM and AFM system. The optical transmission characteristics were measured in terms of Tunable Laser spectrum analyzer.
    At the cross- and self-reflection Bragg wavelengths, the transmission dips of approximately –16.4 and –11.5dB relative to the -3dB background insertion loss and the 3dB transmission bandwidths of approximately 0.6 and 0.5nm were obtained from an ABC-based filter. The transmission spectrum overlaps when the effective index difference between two single waveguides is less than 0.002.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究背景與文獻回顧 2 1.3研究動機與目的 4 1.4論文架構 7 第二章 實驗方法與理論探討 9 2.1光波導元件概述 9 2.1.1光波導元件之光傳播理論 9 2.1.2光波導元件之種類 13 2.1.3耦合器理論 15 2.1.4雙波導耦合器模態理論 16 2.2繞射光柵概述 19 2.2.1繞射光柵之理論 20 2.2.2繞射光柵之種類 21 2.2.3繞射光柵結構之製程技術 24 2.3全像術干涉微影技術 25 2.3.1全像術干涉微影技術之布拉格光柵理論 27 2.3.2全像術干涉微影技術之架構與干涉角度計算 30 2.4高分子加工技術之軟式微影技術 31 2.4.1微接觸印刷 (microcontact printing, μCP) 32 2.4.2毛細管微成形 (micromolding in capillaries, MIMIC) 34 2.4.3微轉印成形 (microtransfer molding, μTM) 34 2.4.4複製成形 (replica molding, REM) 34 第三章 高分子非對稱布拉格耦合元件之製程 36 3.1實驗流程與實驗儀器設備 36 3.2高分子材料特性探討與製程條件 40 3.2.1 PDMS特性探討 40 3.2.2 PDMS製程條件 40 3.2.3 SU-8厚膜光阻特性探討 42 3.2.4 OG146特性探討 44 3.3布拉格光柵元件之架構說明 46 3.4布拉格光柵元件之黃光微影製程 47 3.4.1 光柵元件製程之結果與探討 51 3.5布拉格光柵元件之轉印製程 54 3.5.1光柵翻模製程之結果與探討 56 3.6高分子非對稱布拉格耦合元件之架構說明 59 3.7高分子非對稱布拉格耦合元件之厚膜光阻黃光微影製程 62 3.7.1 SU-8厚膜光阻與OG高分子光柵基板之特性探討 67 3.8高分子非對稱布拉格耦合元件模仁製程 69 3.8.1 OG高分子非對稱布拉格耦合元件模仁之結果與探討 72 3.9高分子非對稱布拉格耦合元件之導光層與包覆層製作 79 3.9.1 高分子非對稱布拉格耦合元件之導光層製作 79 3.9.2 高分子非對稱布拉格耦合元件之包覆層製作 81 第四章 高分子非對稱布拉格耦合元件模擬與量測 83 4.1非對稱布拉格耦合元件之模擬 83 4.2非對稱布拉格耦合元件之量測流程架構說明 86 4.3高分子非對稱布拉格耦合元件之模態場量測 87 4.4高分子非對稱布拉格耦合元件之光頻譜量測與應用 89 第五章 結論與未來展望 97 5.1結論 97 5.2未來展望 98 參考文獻 99 作者簡歷 104

    [1] S.V. Kartalopoulos, “DWDM”, John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A., (2003).
    [2] M. Vailyev, I. Tomkos, M. Mehendale, J.K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, “Transparent Ultra-Long-Haul DWDM Networks With Broadcast-and-Select OADM/OXC Architecture”, IEEE, Journal of Lightwave Technology, vol. 21(11), 2661-2672, (2003).
    [3] T. Erdogan, “Optical add-drop multiplexer based on an asymmetric bragg coupler”, Optics Communications, vol. 157, 249-264, (1998).
    [4] D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer”, Electronics Letters, vol. 40(21), 1374-1375, (2004).
    [5] M. Kalishov, V. Gralsky, J. Schwartz, X. Daxhelet, and D.V. Plant, “Tunable waveguide transmission gratings based on active gain control”, IEEE Journal of Quantum Electronics, vol. 40(12), 1715-1724, (2004).
    [6] M. Dainese, M. Swillo, L. Wosinslki, and L. Thylen, “ Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide”, Optics Communication, vol. 260(2), 514-521, (2006).
    [7] F. Bilodeau, D.C. Johnson, S. Thériault, B. Malo, J. Albert, and K.O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings”, IEEE Photonics Technology Letters, vol. 7(4), 388-390, (1995).
    [8] H.C. Tsoi, W.H. Wong, and E.Y.B. Pon, “ Polymeric long-period waveguide gratings”, IEEE Photonics Technology Letters, vol. 15(5), 721-723, (2003).
    [9] S. Ahn, and S. Shin, “Grating-assisted co-directional coupler filter using electrooptic and passive polymer waveguides”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 7(5), 819-825, (2001).
    [10] L. Dong, L. Reekie, and J.L. Cruz, “Long period grating formed in depressed cladding fibres”, Electronics Letters, vol. 33(22), 1897-1898, (1997).
    [11] T.M. Bulter, E. Igata, S.J. Sheard, and N. Blackie, “Integrated optical Bragg-grating-based chemical sensor on a curved input edge waveguide structure”, Optics Letters, vol. 24, 525-527, (1999).
    [12] Y.O. Noh, H.J. Lee, J.J. Ju, M.S. Kim, S.H. Oh, and M.C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings”, Optics Express, vol. 16(22), 18194-18201, (2008).
    [13] G. Jeong, J.H. Lee, M.Y. Park, C.Y. Kim, S.H. Cho, W. Lee, and B.W. Kim, “Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks”, IEEE Photonics Technology Letters, vol. 18(20), 2102-2104, (2006).
    [14] J.H. Lee, M.Y. Park, C.Y. Kim, S.H. Cho, W. Lee, G. Jeong, and B.W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network”, IEEE Photonics Technology Letters, vol. 17(9), 1956-1958, (2005).
    [15] M.C. Oh, H.J. Lee, M.H. Lee, J.H. Ahn, S.G. Han, and H.G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides”, Applied Physics letters, vol. 73(18), 2543-2545, (1998).
    [16] W.C. Chuang, C.T. Ho, and W.C. Wang, “Fabrication of a high resolution periodical structure using a replication process”, Optics Express, vol. 13, 6685-6692, (2005).
    [17] W.C. Chuang, W.C. Wang, C.K. Chao, and C.T. Ho, “Fabrication of a high resolution periodical structure on polymer waveguide using a replication process”, Optics Express, vol. 15, 8649-8659, (2007).
    [18] W.C. Chuang, C.T. Ho, and W.C. Chang, “Fabrication of polymer waveguides by a replication method”, Applied Optics, vol. 45, 8304-8307, (2006).
    [19] H. Nishihara, M. Haruna, and T. Suhara, “Optical Integrated Circuits”, McGraw-Hill Company, Inc., (2001).
    [20] T.C. Sum, A.A. Bettiol, J.A. van Kan, F. Watt, E.Y.B. Pun, and K.K. Tung, “Proton beam writing of low-loss polymer optical waveguides”, Applied Physics Letters, vol. 83(9), 1707-1709, (2003).
    [21] D.B. Ostrowsky, and A. Jacques, “Formation of optical waveguides in photoresist films”, Applied Physics Letters, vol. 18, 556, (1971).
    [22] D.A. Chang-Yen, R. Eich, and B.K. Gale, “A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques”, Journal of Lightwave Technology, Vol. 23(6), 2088-2093, (2005).
    [23] A. Mukherjee, B.J. Eapen, and S.K. Baral, “Very low loss channel waveguides in polymethylmethacrylate”, Applied Physics Letters, vol. 65, 3179-3181, (1994).
    [24] 黃建誠,「感光高分子之積體光學波導之研製」,碩士論文,國立虎尾科技大學光電與材料科技研究所,雲林,(2004)。
    [25] D. Maecuse, “Theory of Dielectric Optical Waveguide”, Second Edition.
    [26] P.C. Mehta and V.V. Rampal, “Laser and Holography”, World scientific, Singapore, (1993).
    [27] T.V. Galstyan, B. Saad, M.M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization”, The Journal of Chemical Physics, vol. 107, 9319-9325, (1997).
    [28] G. Schmahl, and D. Rudolph, “Holographic diffraction grating”, In: Progress in Optics, E. Wolf, ed., North-Holland, Amsterdam, vol. 14, 195-244, (1976).
    [29] C.Y. Chao, C.Y. Chen, and C.W. Liu, “Direct writing of silicon gratings with highly coherent ultraviolet laser”, Applied Physics Letters, vol. 71, 2442, (1997).
    [30] H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits”, Proceedings of SPIE, vol. 134,152-159, (1980).
    [31] X. Liu, R.M. De La Rue, T.F. Krauss, S. Thomas, S.E. Hickd, and J.S. Atchison, “Electron Beam Production of Phase Masks for Direct Writing of Photo-Induced Gratings”, Lasers and Electro-optics Europe, 1996. CLEO/Europe., Conference on, 126-126, (1996).
    [32] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Though a Phase Mask”, Applied Physics Letters, vol. 62(10), 1035, (1993).
    [33] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits”, McGraw-Hill Book Co., New York, (2001).
    [34] H. Rau, and J.F. Rabek, “Photochemistry and Photophysics”, vol. 2, 119-141, (1990).
    [35] X. Younan, and M.W. George, “Soft Lithography”, Angewandte Chemie International Edition, vol. 37, 550, (1998).
    [36] 林郁凱,「高分子非對稱布拉格耦合元件之研製」,碩士論文,國立虎尾科技大學機械與機電工程研究所,雲林,(2008)。

    QR CODE