簡易檢索 / 詳目顯示

研究生: 陳育文
Yu-wen Chen
論文名稱: 交錯式降壓型功率因數修正器之研製
Study and Implementation of an Interleaved Buck Power Factor Corrector
指導教授: 莊敏宏
Miin-Horng Juang
羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 143
中文關鍵詞: 箝位電流模式控制交錯式降壓型轉換器功率因數修正
外文關鍵詞: power factor correction, interleaved, buck converter
相關次數: 點閱:318下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要研製一台交錯式降壓型功率因數修正器,分別研製300 W單相降壓型功率因數修正器及雙相交錯式降壓型功率因數修正器,進行實做比較。採用箝位電流的控制方式,使電路在一線週期內得以操作於不連續導通以及連續導通兩種模式。
      箝位電流模式控制,具有響應快速等特點,做為交錯式架構的控制電路不僅簡單,輸出電流漣波小,輸入電流諧波也較低。雙相並聯的功率元件規格可以縮小,功率密度與輸出功率也可大為提高。搭配箝位電流的控制,讓電路在重載時操作於不連續電導通模式與連續導通模式,減小峰值電流以及降低電路導通損耗並改善轉換效率特性。不同於一般升壓架構,降壓型功率因數修正器的輸出可以選用耐壓較低的電解電容,在後級直/直流轉換器設計上也具有更多選擇性。本論文詳細分析及討論單相及交錯式降壓型功率因數修正器,並描述電路的操作原理與設計考量,最終以實驗結果驗證兩個架構的優缺點。


      The purpose of this thesis is to study and implement an interleaved buck converter with power factor correction function. Two 300 W PFC prototypes, single-phase power factor corrector (PFC) and two-phase interleaved boost power factor corrector, are implemented and compared. A clamp-current mode control method is adopted and operates the converter in continuous current conduction mode (CCM) and discontinuous current conduction mode (DCM).
      The clamp current mode control provides a faster response, a simple control technique in interleaved topology, lower output ripple current, and lower input current harmonic distortion. In addition, the peak current can be reduced and the size of power components can be smaller. Therefore, the power density can be higher. Under heavy load, the presented converter can be operated in DCM and CCM with the clamp current mode control mathod. This helps reduce conduction losses and improve conversion efficiency. Compared with conventional boost PFC converters, the buck PFC converter can use a lower voltage output electrolyte capacitors those provides more choices in the post-stage DC/DC converter design. The operation principles and design produce for the single-phase buck power factor corrector and the studied interleaved buck power factor corrector are analyzed and discussed in this thesis. Experimental results verify the advantages and disadvantages of the proposed converter.

    中文摘要 i Abstract ii 誌 謝 iv 目 錄 vi 圖目錄 ix 表目錄 xvii 第一章 緒論 1 1.1研究背景 1 1.2研究目的與方向 2 1.3論文大綱 7 第二章 功率因數修正原理 8 2.1功率因數修正問題與總諧波失真率之定義 8 2.2功率因數修正器之特色與種類 13 2.2.1功率因數修正之優點 13 2.2.2被動式功率因數修正器 14 2.2.3主動式功率因數修正器 15 2.3功率因數修正器之架構 17 2.4主動式功率因數修正電路之控制模式 18 2.4.1電壓隨耦控制法 23 2.4.2峰值電流控制法 25 2.4.3平均電流控制法 27 2.4.4磁滯電流控制法 29 2.4.5箝位電流模式控制法 31 第三章 單相式降壓型功率因數修正器 34 3.1降壓型功率因數修正轉換器之電流失真 35 3.2降壓型功率因數修正器之動作分析 35 3.3箝位電流模式控制應用於降壓型功率因數修正器 41 3.3.1斜率補償 48 3.3.2.不連續導通模式 49 3.3.3連續導通模式 50 3.3.4電感電流操作模式之邊界角度 52 3.3.5參考電流 52 3.3.6輸入電流諧波與功率因數 61 3.4儲能電感 62 3.5斜率補償之斜坡電流 64 3.6儲能電容 69 3.7功率開關及輸出二極體 71 第四章多相式降壓型轉換器理論分析 73 4.1多相式轉換器架構介紹 73 4.2多相式轉換器架構之電壓模式分流技術 75 4.3雙相交錯式降壓型轉換器電路分析 77 4.4雙相交錯式降壓型轉換器動作時序分析 81 4.5儲能電感 84 4.6輸出電容 86 4.7功率開關及功率二極體 87 4.8雙相式降壓型轉換器輸入與輸出漣波分析 88 第五章 交錯式降壓型轉換器設計 90 5.1控制IC UC3842內部方塊圖與接腳圖介紹 90 5.2自製錯相信號介紹 95 5.3降壓型功率因數修正轉換器電路之規格 96 5.4降壓型功率因數修正轉換器電路之設計 97 第六章 實驗數據與實驗結果 105 6.1單相式降壓型功率因數修正器量測數據 105 6.2交錯式降壓型功率因數修正器量測數據 111 6.3單相式與交錯式降壓型功率因數修正器實驗結果比較 126 第七章 結論與未來展望 136 7.1 結論 136 7.2未來展望 137 參考文獻 139

    [1] Limits for Harmonic Current Emissions (Equipment Input Current <16A Per Phase), IEC/EN 61000-3-2, 1995
    [2] B Wilkenson, “Power Factor Correction and IEC 555-2”, Power Techniques Magazine, pp. 20-24, 1991.
    [3] A. I. Pressman, “Switching Power Supply Design,” McGraw-Hill, Inc., 2009.
    [4] 梁適安,「交換式電源供給器之理論與實務設計(修訂版)」,台北:全華科技圖書股份有限公司,2008。
    [5] R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Second Edition, Kluwer academic Publishers, 2001.
    [6] Y. Suzuki, T. Teshima, I Sugawara and A. Takeuchi, “Experimental Studies on Active and Passive PFC Circuits, Proc. of IEEE International Telecommunication Energy Conference, pp. 571-578, 1997.
    [7] O. Garcia, J. A Cobos, R. Prieto, P. Alou and J. Uceda, “Single Phase Power Factor Correction:A Survey,” IEEE Trans. on Power Electronics, Vol.18, no.3, pp. 749-755, 2003.
    [8] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics Converters, Applications and Design,” John Wiley & Sons, 3rd Edition, 2003.
    [9] S. Kim and P. N. Enjeti, “A Modular Single-Phase Power Factor Correction Scheme With a Harmonic Filtering Function,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 2, pp. 328-335, April. 2003.
    [10] 洪瑞鴻,「2kW功率因數修正器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國94年。
    [11] 黃健淳,「250W局部零電壓切換準諧振升壓型功率因數修正器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國98年。
    [12] STMicroelectronics Inc, “UC3842 Current Mode PWM Controller ” Data Sheet, June. 1999.
    [13] L. Huber, L. Gang and M. M. Jovanovic, “Design-Oriented Analysis and Performance Evaluation of Buck PFC Front-End,” IEEE Transactions on Industrial Electronics, Vol. 25, no. 1, pp. 85-94, May 2010.
    [14] G. Young, G. Tomlins, and A. Keogh, “An AC/DC Converter,” World Intellectual Property Organization, International Publication Number WO 2006/046220 A1, May 4, 2006.
    [15] L. Huber and M.M. Jovanović, “Design-oriented Analysis and Performance Evaluation of Clamped-Current-Boost Input-Current Shaper for Universal-Input-Voltage Range,” IEEE Transactions on Power Electronics, Vol. 13, no.3, pp. 528-537, May 1998.
    [16] On Semiconduction, “Ramp Compensation for the NCP1200” Application Note, March. 2001.
    [17] ST Microelectronics Data Manual, ST Microelectronics Inc., “L4981A Power Factor Corrector,” Sept. 2000.
    [18] ST Microelectronics Data Manual, ST Microelectronics Inc., “L4981A/B Power Factor Corrector,” Sept. 1998.
    [19] L. Moran, P. Werlinger, J. Dixon and R. Wallance, “A Series Active Power Filter Which Compensates Current Harmonics and Voltage Unbalance Simultaneously,” in Proc. IEEE PESC Conf., pp. 222-227, 1995
    [20] C. K. Tse, Y. M. Lai, R. J. Xie, and M. H. L. Chow, “Application of Duality Principle to Synthesis of Single-Stage Power-Factor-Correction Voltage Regulators,” International Journal of Circuit Theory and Applications, Jun. 2003, pp. 555-570.
    [21] C. Souvik, K. Rajaganesh and V. Ramanarayanan, “Impedance Emulation Method for A Single Phase Shunt Active Filter,” In Proc. IEEE APEC Conf., Vol. 2, 2003, pp. 907-912.
    [22] T. F. Wu, J. C. Hung, S. Y. Tseng, and Y. M. Chen, “A Single-Stage Fast Regulator with PFC Based on An Asymmetrical Half-Bridge Topology,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 139-150, 2005.
    [23] L. Rossetto, G. Spiazzi, and P. Tenti, “Control Techniques for Power Factor Correction Converters,” Proc. of EPE International Power Electronics and Motion Control Conference, pp. 1310-1318, 1994.
    [24] S. Wall and R. Jackson, “Fast Controller Design for Single-Phase Power Factor Correction Systems,” IEEE Trans. Ind. Electron., Vol. 44, No. 5, pp. 654-660, 1997.
    [25] Z. Yang and P. C. Sen, “Power Factor Correction Circuits with Robust Current Control Technique,” IEEE Aerosp. Electron. Syst. Mag., Vol. 38, No. 4, pp. 1210-1219, 2002.
    [26] M. Orabi and T. Ninomiya, “A Unified Design of Single-Stage and Two-Stage PFC Converter,” Proc. of IEEE Power Electronics Specialists Conference, pp. 1720-1725, 2003.
    [27] M. M. Jovanovic and Y. Jang, “State-of-the-Art, Single-Phase, Active Power Factor Correction Techniques for High-Power Applications An Overview,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 701-708, 2005.
    [28] J. S. Lai and D. Chen, “Design Consideration for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, 1993.
    [29] T. F. Wu and T. H. Yu, “Off-Line Applications with Single-Stage Converters,” IEEE Trans. Ind. Electron., Vol. 44, No. 5, pp. 638-647, 1997.
    [30] H. Wei and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” Proc. of IEEE Power Electronics Specialists Conference, pp. 1162-1172, 1998.
    [31] F. J. F. Martin, C. B.Viejo, J. C. A. Anton, M. A. P. Garcia, M. Rico-Secades, and J. M. Alonso, “Analysis and Design of A High Power Factor, Single-Stage Electronic Ballast for High-Intensity Discharge Lamps,” IEEE Trans. Power Electron., Vol. 18, No. 2, pp. 558-569, 2003.
    [32] H. J. Chiu and L. W. Lin, “A High-Efficiency Soft-Switched AC/DC Converter with Current-Doubler Synchronous Rectification,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 709-718, 2005.
    [33] 顏上進,「生化儀器用電源供應器之研製」,國立台灣科技大學研究所碩士論文,民國91年。
    [34] Texas Instruments Inc, “Power Factor Correction Using the Buck Topology-Efficiency Benefits and Practical Design Considerations,” Application Note SLUP264, June. 2010.
    [35] Texas Instruments Inc, “UCC29910 Buck PFC Controller ”Data Sheet, June. 2010.
    [36] 謝沐田,高低頻變壓器設計,全華科技圖書股份有限公司,2005年11月。
    [37] TDK Ferrite Cores for Power Supply and EMI/RFI Filter, 2007.

    QR CODE