簡易檢索 / 詳目顯示

研究生: 李明展
Ming-chan Lee
論文名稱: 固態氧化物燃料電池封裝設計與超彈性Ni-Ti封裝元件有限元素分析
Sealing Design and Finite Element Analysis of Superelastic Ni-Ti Sealing Component for Solid Oxide Fuel Cell
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 雷添壽
Tien-Shou Lei
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 121
中文關鍵詞: 燃料電池封裝有限元素分析
外文關鍵詞: SOFC sealing, Finite element analysis
相關次數: 點閱:446下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為追求更好的燃料電池封裝方式,本論文主要探討:(1)銀環在固態氧化物燃料電池高溫時氣密封裝之設計;(2)超彈性Ni-Ti合金低溫時做為集電座封裝元件之設計。
一般文獻在封裝材料上運用玻璃、玻璃陶瓷或金屬合金材質作為封裝元件,封裝設計則以固定方式緊貼在雙極板上,當有洩漏發生時維修拆卸不易。本論文之設計概念是利用直徑1.2mm的銀環及電解質固定座之設計做為封裝主要零件。由於銀的熱膨脹係數高及導電性佳與可拆式之電解質固定座互相配合後,再利用陶瓷導引柱控制上下固定座,使銀環不偏離V型槽,當溫度提高時銀環在電解質固定座V型溝槽內有三個面緊貼著固定座,可達到洩漏率降低之目的。
本論文之氣密測試實驗為在電解質左右兩側各有一個銀環,並將銀環置入在電解質固定座V型溝槽內,電解質固定座與單顆電池固定板材質為SUS310;實驗方式為在常溫25℃、500℃、600℃、700℃、800℃下通入250cc/min氣體,各種溫度連續4小時並且量測其洩漏率。由於銀環的熱膨脹係數高,當溫度提昇時電解質固定座會與銀環互相擠壓,洩漏率由9.6%(25℃)降至2.4%(800℃)。循環測試則是將操作溫度由常溫25℃升溫至800℃(兩小時)為第一次循環,再將溫度降至常溫25℃後,再升溫至800℃(第二次循環),第一次循環測試時,在溫度未提昇前,銀環與電解質及固定座間為線接觸狀態,在常溫25℃時量測的洩漏量為23~25cc/min,第二次循環時,由於經過第一次循環時的升溫,銀環已被擠壓成面接觸狀態,再次在常溫25℃下量測的洩漏量則降至10~11 cc/min。
在超彈性Ni-Ti合金低溫封裝元件之幾何設計上,為達最佳化設計,本論文利用有限元素分析K型與Y型兩種幾何模型,探討在受同樣負載下,K型與Y型兩種幾何模型之應力、位移及應變,由所得結果發現K型幾何所受之應力較小而Y型幾何之位移量則較大,再對K型與Y型兩種幾何模型進行不同角度之區域及全域靈敏度分析,根據分析結果再由兩種模型中各選擇一角度做最佳化分析,最佳化分析後K型幾何之應力值改善達到15.6%,Y型幾何之位移量則提昇25.7%。若需應力較小之封裝可以選用K型幾何,若需較大塑性變形量之封裝可以選用Y型幾何。


In order to seek a better sealing method for fuel cell, in this thesis, we have discussed (1) gas-tight design of silver ring under high temperature operation of Solid Oxide Fuel Cell; (2) shape design of superelastic Ni-Ti alloy under low temperature of electricity collection plate sealing component.
In press and paper work, glass, glass ceramic or metal alloy can usually be taken as a sealing component. The design is usually to fix the sealing component onto the interconnector. When leakage is found, it is not easy to disassembly the fuel cell for repairing. In this thesis, a silver ring with 1.2mm diameter is placed onto the electrolyte and electrolyte fixture as the sealing component. The coefficient of thermal expansion of silver is very high and the conductivity of silver is also very good, with the coordination between the silver ring and the electrolyte fixture and the ceramic guided post to control the up and down fixture, the sliver ring is well fixed onto the V shape groove. When temperature increased, a half of surface of the silver ring is fixed into the V shape groove of the electrolyte fixture and the leakage rate can be reduced.
The gas-tight test of this experiment is described as below. On the right and left side of electrolyte, two sliver rings were placed onto the V shape groove of the right and left electrolyte fixtures. The material of the fixture is SUS310. In the gas-tight test, gas was input to the chamber in a speed of 250 cc/min under five different kinds of temperature, 25℃, 500℃, 600℃, 700℃ and 800℃ for four hours and leakage rate was measured. As temperature increased, silver ring would be extruded with the electrolyte fixture. The leakage rate dropped from 9.6% (25℃) to 2.4%(800℃).
In the thermal cycle test, the temperature was raised from 25℃ to 800℃ within two hours then cooled down to 25℃ and raised again to 800℃. In the first thermal cycle, at temperature 25℃, the silver ring is in line contact condition with the fixture and the leakage volume measured is 23~25 cc/min, however, in the second thermal cycle at the same temperature of 25℃, the silver ring is in surface contact condition with the fixture and the leakage volume measured is 10~11 cc/min.
In the geometry design of superelastic Ni-Ti alloy low temperature sealing component, in order to achieve the optimized design of geometry, the finite element analysis is utilized to analyze the K type and Y type geometry design. Under the same stress load, the stress, displacement and strain were discussed. From the analysis result, we found that the stress of the K type geometry is smaller than the Y type and the displacement of the K type is bigger than the K type. We further analyzed the K type and Y type geometry in different angle of design with local and global sensitivity analysis. Based on the analysis result, we further chose one best angle design from each of the K and Y type geometry for optimization analysis. After optimization, the improvement rate of stress for K type geometry is 15.6% and the improvement rate of displacement for Y type is 25.7%. When the design of sealing component is requiring a lower stress, K type geometry can be applied and when the design is looking for a bigger deformation, Y type geometry can be applied.

中文摘要I 英文摘要II 誌謝V 目錄VII 圖目錄XI 表目錄XVII 第一章 緒論1 1.1 前言1 1.2 文獻回顧7 1.2.1 燃料電池之文獻回顧7 1.2.2固態氧化物燃料電池封裝結構之文獻回顧8 1.3研究動機與目的16 1.4本文架構18 第二章SOFC封裝原理與有限元素理論19 2.1固態氧化物燃料電池之組成與分類19 2.1.1固態氧化物燃料電池之組成20 2.1.1.1 電解質21 2.1.1.2 陰極21 2.1.1.3 陽極22 2.1.1.4 雙極板22 2.1.2固態氧化物燃料電池之分類22 2.1.2.1管式SOFC22 2.1.2.2平版式SOFC25 2.2 固態氧化物燃料電池之封裝簡介27 2.2.1 SOFC封裝種類29 2.2.2 SOFC封裝材料及特性30 2.2.2.1銀的使用30 2.2.2.2形狀記憶合金的使用32 2.3 有限元素介紹35 2.3.1有限元素簡介35 2.3.2使用軟體介紹36 第三章 元件氣密設計測試及有限元素分析37 3.1銀環之氣密設計37 3.1.1機構封裝設計39 3.1.2封裝零件物理特性42 3.1.3實驗設備42 3.1.4測試結果與分析44 3.2 超彈性Ni-Ti封裝元件有限元素分析47 3.2.1研究流程與方法47 3.2.2超彈性Ni-Ti封裝元件邊界條件設定49 3.2.3超彈性Ni-Ti封裝元件原始模型49 3.2.4模型簡化51 3.2.5物件材質的設定52 3.2.6網格的劃分54 3.2.7零件邊界條件設定54 3.2.7.1限制條件設定54 3.2.7.2圓周對稱限制設定56 3.2.7.3負載設定57 3.2.8量測點位移的設定58 3.2.9超彈性Ni-Ti合金封裝元件不同幾何形狀分析59 3.2.9.1受力於Y型零件分析60 3.2.9.2受力於K型零件分析62 3.2.9.3小結論64 3.2.10受力於K型幾何不同角度之分析64 3.2.10.1受力於K型15度幾何形狀分析65 3.2.10.2受力於K型20度幾何形狀分析67 3.2.10.3受力於K型25度幾何形狀分析68 3.2.10.4受力於K型30度幾何形狀分析70 3.2.10.5受力於K型35度幾何形狀分析72 3.2.10.6受力於K型40度幾何形狀分析73 3.2.10.7小結論75 3.2.11受力於Y型幾何不同角度之分析76 3.2.11.1受力於Y型15度幾何形狀分析77 3.2.11.2受力於Y型20度幾何形狀分析79 3.2.11.3受力於Y型25度幾何形狀分析80 3.2.11.4受力於Y型30度幾何形狀分析82 3.2.11.5受力於Y型35度幾何形狀分析83 3.2.11.6受力於Y型40度幾何形狀分析85 3.2.11.7小結論87 3.2.12超彈性Ni-Ti合金封裝元件靈敏度分析88 3.2.12.1區域靈敏度分析88 3.2.12.1.1參數的設定與篩選89 3.2.12.1.2執行與結果91 3.2.12.2全域靈敏度分析95 3.2.12.2.1參數的設定與篩選96 3.2.12.2.2執行與結果97 3.2.13 超彈性Ni-Ti合金封裝元件最佳化分析101 3.2.13.1限制條件及目標的設定101 3.2.13.2執行與結果103 3.2.14幾何驗證105 第四章 比較分析與討論109 4.1封裝結構研究分析109 4.1.1內部封裝結構與電流導引原理之比較109 4.1.2外部封裝結構固定方式之比較111 4.1.3電解質安裝方式之比較112 4.2有限元素分析與討論113 第五章 結論與未來研究方向115 5.1 結論115 5.2 未來研究方向116 參考文獻118

1.經濟部能源局,“國際油價回顧與展望”,中華民國九十五年十二月二十二日。http://www.moeaboe.gov.tw。
2.環境資訊中心,京都協議書。http://e-info.org.tw/tags/14883。
3.林伸茂編審,“新能源時代のDMFC直接甲醇燃料電池原理、應用與實作”。
4.黃鎮江編著,“燃料電池修訂版”。
5.M. Cifrain and K. Kordesch, Volume 1, part 4, pp 267-280, http://www.electricauto.com/_pdfs/newpapers/104013_o.pdf.
6.工研院,燃料電池與氫能研究室,http://www.erl.itri.org.tw/about/org/org_020201.asp。
7.Fuel Cell Energy April 2003, “Direct Fuel Cell DFC1500 Power Plant Specification Summary,” http://www.albanconsultantscorner.com/pdf/DFC1500_specsheet.pdf。
8.http://www.fuelcellstore.com
9.Hydrogen & Fuel Cell, Investor, http://www.h2fc.com/reframe.php?top=/global/indust.shtml&bot=/industry/fcellcomp/sofc.shtml.
10.勝光科技, http://www.antig.com/t_chinese/tech.html。
11.陳誦英,王峰雲,鄭淑芬,“固體氧化物燃料電池(SOFC)研究進展和發展動態”,2003.1~2003.9。
12.S. Taniguchi, M. Kadowaki, T. Yasuo, Y. Akiyama, Y. Miyake, K. Nishio, “Improvement of thermal cycle characteristics of a planar-type solid oxide fuel cell by using ceramic fiber as sealing material” Journal of Power Sources 90 (2000) 163-169.
13.Steven P. Simner and Jeffry W. Stevenson, “Compressive mica seals for SOFC applications” Journal of Power Sources 102 (2001) 310-316.
14.Yeong-Shyung Chou and Jeffry W. Stevenson, “Novel silver/mica multilayer compressive seals for solid-oxide fuel cells: The effect of thermal cycling and material degradation on leak behavior” J. Mater. Res., Vol.18, No.9, Sep. 2003.
15.Y-S Matt Chou, “Compressive Seal Development for Solid Oxide Fuel Cells,” Pacific Northwest National Laboratory, Richland WA 99352, April 17-21, 2005 Asilomar, CA.
16.K. Scott Weil, “Alternative planar SOFC sealing concepts,” Fuel Cells Bulletin, P.11-16, Pacific Northwest National Laboratory, Richland WA 99352, May 2004.
17.P. Batfalsky, “Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks” Journal of Power Sources 155 (2006) 128-137, July 18, 2005.
18.Charles Compson, Meilin Liu, “Fabrication and characterization of hermetic solid oxide fuel cells without sealant” Solid State Ionics 177 (2006) 367-376, Oct. 6th, 2005.
19.Michael C. Tucker, “A braze system for sealing metal-supported solid oxide fuel cells” Journal of Power Sources 160 (2006) 1049-1057, March 31st , 2006.
20.K. A. Nielsen, “Glass composite seals for SOFC application” Journal of European Ceramic Society 27 (2007) 1817-1822, June 27th, 2006.
21.Ronald Loehman, Mathieu Brochu, Bryan Gauntte and Raja Shah, “Development of Reliable Methods for Sealing Solid Oxide Fuel Cell Stacks” SECA Core Technology Program Review, January 27-28, 2005 Tempa, FL, USA.
22.Raj N. Singh, “Innovative Seals for Solid Oxide Fuel Cell (SOFC)-SOFT Seals” SECA workshop, Philadelphia, September 12-14, 2006.
23.Raj N. Singh, “Sealing Technology for Solid Oxide Fuel Cells (SOFC)” Int. J. Appl. Ceram. Technol., 4 [2] 134-144 (2007).
24.Yeong-Shyung Chou and Jeff Stevenson, “SOFC Seals Material Status” FY 2006 Annual Report, 94-96, Office of Fossil Energy Fuel Cell Program, Pacific Northwest National Laboratory, Richland WA 99352, Jul., 2003.
25.http://cbl.be.cycu.edu.tw
26.林清安,“Pro/ENGINEER Wildfire 2.0零件設計—基礎篇(上)”,知城數位技公司,2005
27.“Parametric Technology Corporation, Fundamentals of Pro/MECHANICA Structure/Thermal,” 2001, MA, USA
28.Roger Toogood, “Pro/ENGINEER Wildfire 2.0 MECHANICA Tutorial,” SDC Publication, 2004
29.林龍震,“Pro/Mechanism/MECHANICA Wildfire 2.0機構/運動/結構/熱力分析”,台北金禾資訊,2005
30.Zhenguo Yang, “Chemical Compatibility of Barium-Calcium- Aluminosilicate-Based Sealing Glasses with the Freeitic Stainless Steel Interconnect in SOFCs,” Journal of the Electrochemical Society, 150 (8) A1095-A1101, (2003), June 23rd, 2003.
31.M. Brochu, “Comparison between barium and strontium-glass composites for sealing SOFCs,” Journal of European Ceramic Society 26 (2006) 3307-3313, October 5th, 2005.
32.Jin Yong Kim, “Novel Metal-Ceramic Joing for Planar SOFCs,” Journal of the Electrochemical Society, 152 (6) J52-J58 (2005), May 11th, 2005.
33.Shiru Le, “Novel compressive seals for solid oxide fuel cells,” Journal of Power Sources 161 (2006) 901-906, July 7th, 2006.
34.A. Flugel, “Development of an Improved Devitrifiable Fuel Cell Sealing Glass,” Journal of the Electrochemical Society, 154 (6) B601-B608 (2007), April 25th, 2007.

QR CODE