簡易檢索 / 詳目顯示

研究生: 張恩慈
En-Tzu Chang
論文名稱: 紫膜晶片活性穩定性初步探討
Preliminary Study of Thermostability of Purple-Membrane Coated Chips
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 曾文祺
Wen-Chi Tseng
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 紫膜生物晶片
外文關鍵詞: purple mambrane
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 嗜鹽菌Halobacterium salinarum紫色細胞膜(purple membrane, PM)中含有光驅動質子幫浦細菌視紫質(bacteriorhodopsin, BR)蛋白。BR受光激發後,會產生一連串光循環反應及單一方向跨膜質子梯度,可用以產生光電響應。本研究藉由分析PM晶片在不同pH值、鹽濃度與溫度之溶液中的光電流值變化,探討其穩定性。首先單以氧化avidin為架橋並固定化b-PM之PM晶片,探討以與固定化b-PM相同組成的緩衝液做為量測電解液時之晶片光電流變化。結果發現用以塗覆b-PM之電解液中不含鹽時,在pH 8時可產生最大的光電流值,且光電流在pH 7到pH 8.5間極性反向,以AFM分析圖及光電流圖可估算每片PM所產生的光電流值,且在緩衝液為pH 6.5時有最大值。其次懸浮液和電解液溶液中添加10 mM KCl的時,則在pH 8時可產生最大光電流值,光電流在pH 7到pH 8.5間極性反向,其原因為溶液中的鹽離子可中和PM表面電性,使PM塗覆量增加,但當pH值太高時會使鹽離子對PM膜表面效應降低,而以AFM分析圖及光電流圖所估算每片PM所產生的光電流值,則在緩衝液為pH 9時有最大值。其次對於以氧化avidin與氧化石墨稀複合物為架橋,而固定化修飾有biotin的b-PM後所得的PM晶片,置於微流道中進行即時光電流檢測,並探討不同溫度與不同流速的電解液對及時量測光電流之影響。晶片不加熱而僅加熱電解液時,在不流動時,晶片光電流在高溫時下降比例最高,但在增加流速後,光電流下降程度會減少。而使用同步加熱晶片與電解液時,也有相同情況發生,推測是因為升高流速後可增加電解液的替換率,降低受光BR所推出之質子,降低電解液pH而降低光電流之程度。


    Bacteriorhodopsin (BR) residing in the purple membrane (PM) of Halobacterium salinarum is a light-driven proton pump protein. When BR is excited by light, it undergoes a photocycle to directly transport a proton through the membrane, generating a proton gradient across PM, which can be converted to a photoelectrochemical potential. In this study, we investigated the effects of pH, salt concentrations, as well as electrolyte temperatures and flow rates on the photocurrent density and the stability of the PM-coated chips. First, the pH and salt effects were studied with b-PM, a PM form modified with biotin, immobilized on solid substrates with oxidized avidin as the linker. The buffer used to suspend b-PM for coating was the same as the electrolyte used for photocurrent measurements. As a result, the maximum of total photocurrent densities was obtained when the buffer contained no salt and at pH 8. The reversal of photocurrents was observed between pH 7 and 8.5. By coupling both AFM and photocurrent analyses, we estimated the photocurrent density produced by each illuminated b-PM sheet. The maximum value with the desalinated buffers was observed at pH 6.5. On the other hand, for the buffers containing 10 mM KCl, the maximum photocurrent density per illuminated b-PM sheet was obtained at pH 9 and the photocurrent reversal was observed also between pH 7 and 8.5. Next, in order to investigate the effects of electrolyte temperatures and flow rates on the photocurrents of b-PM coated chips, the chips were mounted inside a microfluidic device. In this experiment, b-PM was immobilized with an oxidized avidin-graphene oxide complex as the linker and the buffer flowing over the chip was also used as the electrolyte for real-time photocurrent measurements. As a result, we found that increasing the flow rate of the electrolyte mitigated the reduction of photocurrent densities caused by temperature elevation.

    目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 第二章 文獻回顧 2 2-1細菌視紫質(bacteriorhodopsin,BR) 2 2-1-1 H. salinarum 2 2-1-2 BR結構 3 2-1-3 分子功能及BR光循環 4 2-1-4 BR光電響應 7 2-2 PM晶片在不同緩衝液中的變化 8 2-2-1緩衝液鹽濃度之影響 8 2-2-2 緩衝液pH值之影響 9 2-2-3 變換緩衝液的溫度條件 11 2-3 PM膜固定化法 12 2-3-1 biotin/avidin生物親和固定化法 13 2-3-2結合氧化石墨烯與biotin/avidin之生物親和固定化法 13 第三章 實驗 16 3-1 實驗目的 16 3-2 實驗藥品 16 3-3實驗設備 17 3-4 實驗流程 18 3-5 微分光電流訊號量測(D1、D2) 20 3-5-1 pH值、鹽度條件晶片量測 20 3-5-2 溫度條件晶片量測 20 第四章 結果討論 24 4-1緩衝液pH值對PM晶片光電流響應與塗覆狀態的影響 24 4-1-1 PM晶片以不加鹽且不同pH值之緩衝液塗覆之結果 25 4-1-2 PM晶片在加入10 mM KCl且不同pH值之緩衝液塗覆之結果 49 4-2緩衝液溫度對PM晶片光電流響應的影響 71 4-2-1 僅加熱電解液 71 4-2-2 同時加熱電解液與晶片 72 第五章 結論 84 第六章 參考資料 86

    余安棣,製備具高度方向性之Bacteriorhodopsin生物電晶片,國立台灣科技大學化學工程研究所碩士論文,2009
    陳逸航,定向性細菌視紫質晶片之光電與二倍頻響應探討,國立台灣科技大學化學工程研究所碩士論文,2010
    蔡孟訓,自排性單層分子膜於Bacteriorhodopsin光電晶片製備之探討,國立台灣科技大學化學工程研究所碩士論文,2011
    林其融,AFM探討分別以結合氧化石墨烯之親和吸附與共價鍵結作用固定化之紫膜,國立台灣科技大學化學工程研究所碩士論文,2012
    吳欣穎,細菌視紫質泛用型免疫光電晶片製備與原子力顯微鏡分析,國立台灣科技大學化學工程研究所碩士論文,2015
    陳冠辰,適體-細菌視紫質生物光電感測晶片之探討,國立台灣科技大學化學工程研究所碩士論文,2015

    Brizzolara; R.A. A method for patterning purple membrane using self-assembled monolayers. Biosystems, 1995, 35, 137-140.

    Chen, H. M.; Lin, C. J.; Jheng, K. R. ; Kosasih, A. ; Chang, J. Y. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids and Surfaces B: Biointerfaces, 2014,116, 482-488.

    Chu, L.K.; Yen, C.W.; El-Sayed, M.A. Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics, 2010, 26, 620-626.

    Cote, L. J.; Kim, J., Tung, V. C., Luo, J., Kim, F.; Huang, J. Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 2011, 83, 95-110.

    Diamandis; E. P.; Christopoulos, T.K. The biotin-(strept) avidin system: principles and applications in biotechnology. Clinical chemistry, 1991, 37, 625-636.

    Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews, 2000, 100, 1755-1776.

    He, J. A.; Samuelson, L.; Li, L.; Kumar, J.; Tripathy, S. K. Bacteriorhodopsin Thin‐Film Assemblies—Immobilization, Properties, and Applications, Advanced Materials, 1999, 11, 435-446.

    Heberle, J.; Riesle, J.; Thiedemann, G.; Oesterhelt, D.; Dencher, N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature, 1994, 370, 379-382.

    Hong, F. T. Interfacial photochemistry of retinal proteins. Progress in Surface Science, 1999, 62, 1-237.

    Keszthelyi, L. Orientation of membrane fragments by electric field. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1980, 598, 429-436.

    Koyama, K.; Yamaguchi, N.; Miyasaka, T. Antibody-mediated bacteriorhodopsin orientation for molecular device architectures. Science, 1994, 762-765.

    Li, B. Temperature and pH-dependent inversion of photoelectric response in bacteriorhodopsin. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 79-81.

    Miyasaka, T.; Koyama, K. Rectified photocurrents from purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface. Thin Solid Films, 1992, 210, 146-149.

    Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Advances, 2015, 5, 10782-10789.

    Okajima, T. L.;. Hong, F.T. Kinetic analysis of displacement photocurrents elicited in two types of bacteriorhodopsin model membranes. Biophysical Journal , 1986, 50, 901-912.

    Popp, A.; Wolperdinger, M.; Hampp, N.; Brüchle, C.; Oesterhelt, D. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films. Biophysical Journal, 1993, 65, 1449-1459.

    Saga, Y.; Watanabe, T.; Koyama, K.; Miyasaka, T. Buffer effect on the photoelectrochemical response of bacteriorhodopsin. Analytical Sciences, 1999, 15, 365-369.
    Sapra, K. T.; Besir, H.; Oesterhelt, D.; Muller, D. J. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. Journal of Molecular Biology, 2006, 355, 640-650.

    Su, T. ; Zhong, S. ;Zhang, Y. ; Hu, K. S. Asymmetric distribution of biotin labeling on the purple membrane. Journal of Photochemistry and Photobiology B: Biology, 2008, 92, 123-127.

    Voïtchovsky, K.; Contera, S. A.; Kamihira, M.; Watts, A.; Ryan, J. F. Differential stiffness and lipid mobility in the leaflets of purple membranes.Biophysical journal, 2006, 90, 2075-2085.

    Wang, J. P.; Yoo, S. K.; Song, L.; El-Sayed, M. A. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B, 1997, 101, 3420-3423.

    Wang, J. Vectorially oriented purple membrane: characterization by photocurrent measurement and polarized-Fourier transform infrared spectroscopy. Thin Solid Films, 2000, 379, 224-229.

    Zhu, Y.; Murali,S.; Cai, W.; Li,X.; Suk,J. W.; Potts, J. R.; Ruoff , R. S. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22, 3906-3924.

    無法下載圖示 全文公開日期 2021/11/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE