簡易檢索 / 詳目顯示

研究生: 胡維倫
Wei-Lun-Hu
論文名稱: 以食品製程之副產物應用於培養基因重組大腸桿菌生產藍藻蛋白之探討
Utlilize by-products of food production processes to produce cyanophycin with recombinant Escherichia coli
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 林析右
Shi-Yow Lin
唐建翔
Chien-Hsiang Tang
陳信銘
Hsin-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 藍藻蛋白食品製程副產物
外文關鍵詞: cyanophycin
相關次數: 點閱:221下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

藍藻蛋白(cyanophycin granule polypeptide,CGP)又稱藻青素是一種非核醣體合成的聚合物,於一百多年前就已經被科學家Borzi觀察藍綠藻菌(cyanobacteria)時發現了藍藻蛋白。藍藻蛋白原本是由藍綠藻菌體內所產生的物質,但並不是所有的藍綠藻都能產生藍藻蛋白。天然的藍藻蛋白是由等莫耳比例的精胺酸 (arginine, Arg)跟天門冬胺酸 (aspartic acid, Asp),以天門冬胺酸為主鏈與精胺酸為側鏈進行胺基酸聚合反應為主鏈,其鍵結為精胺酸的β-羧基以及天門冬胺酸的α-胺基做為連接。
本實驗藉由Plackett-Burman設計12組培養基得到所需的因子,再利用 Response Surface-Central Composite這15組培養基,使用Synechocysis sp.PCC6803 cphA之E. coli BL21 (DE3) CodonPlus-RIL培養於這些培養基,培養溫度為22 oC並用0.01 mM IPTG進行誘導,將培養的菌體經由藍藻蛋白純化步驟,便可得到水溶性藍藻蛋白(sCGP)以及非水溶性藍藻蛋白(inCGP)。
經過計算後,以酵母菌萃取物和胰蛋白腖來培養,改成以糖蜜以及大豆水解液來培養培養基因重組大腸桿菌,在相同的成本下,用大豆水解液以及糖蜜所配成的培養基,能夠得到較多的藍藻蛋白。


Cyanophycin (Cyanophycin Granular Peptide, CGP) is a non-ribosome-synthesized polymer. It has been discovered by scientist Borzi more than a hundred years ago while observing cyanobacteria. The cyanobacterial protein was produced by the Cyanobacteria, but not all Cyanobacteria can produce cyanobacterial protein. The natural cyanobacterial protein is composed of equal molar ratios of arginine (Arg) and aspartic acid (Asp), with aspartic acid as the main chain and arginine as the side chain for connection.
In this experiment, Plackett-Burman designed 12 runs of media to obtain the required factors, and then used Response Surface-Central Composite 15 runs of media, using Synechocissis sp. PCC6803 cphA E. coli BL21 (DE3) CodonPlus-RIL cultured in these media at a culture temperature of 22 oC and induction with 0.01 mM IPTG, the cultured cells undergo a cyanobacteria protein purification step to obtain soluble and insoluble cyanophycin.
After calculation, compare with the medium prepared with yeast extract and trypsin and the medium prepared with molasses and soybean hydrolysate were used to cultivate the genetically recombinant E. coli. At the same cost, the medium prepared with soybean hydrolysate and molasses could get more cyanobacteria protein.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 X 附錄圖目錄 XI 第一章 緒論 1 第二章 文獻回顧 2 2.1 糖蜜 2 2.1.1糖蜜之來源 2 2.1.2糖蜜營養價值 2 2.1.3糖蜜的應用 4 2.2 大豆水解液 5 2.2.1大豆水解液之來源 5 2.3.2大豆水解液的價值 6 2.3藍藻蛋白 6 2.2.1藍藻蛋白結構與特性 7 2.2.2以基因重組菌生產藍藻蛋白 8 2.2.3藍藻蛋白的應用 9 2.3 Plackett-Burman 設計 10 2.4 Surface Response – Central Composite 設計 12 2.5高效液相層析 15 第三章 實驗材料與方法 16 3.1藥品與儀器清單 16 3.2實驗儀器 18 3.3藥品配置 19 3.3.1 菌株培養 19 3.3.1.1二合一抗生素 19 3.3.1.2 Luria broth medium plate (LB medium plate) 19 3.3.1.3 Luria broth medium (LB medium) 19 3.3.1.4 Terrific broth medium (TB medium) 19 3.3.1.5 Phosphate 20 3.3.1.6 Molasses solution 20 3.3.1.7 Vitamin solution 20 3.3.1.8 Trace element 20 3.3.1.9 Isopropyl β-D-1-thiogalactopyranoside (IPTG) 21 3.3.2 SDS-PAGE 21 3.3.2.1 0.5M Tris-HCl buffer ( pH=6.8 )上層膠 21 3.3.2.2 1.5M Tris-HCl buffer ( pH=8.8 )下層膠 21 3.3.2.3 10% SDS (sodium dodecyl sulfate) 21 3.3.2.4 20% APS (ammonium persulfate) 21 3.3.2.5 10×protein running buffer 21 3.3.2.6 protein staining buffer 22 3.3.2.7 protein de-staining buffer 22 3.3.2.8 protein preserving buffer 22 3.3.3 HPLC 22 3.3.3.1 Pre-derivatization solution 22 3.3.3.2 Derivatization solution 22 3.3.3.3 0.14 M 醋酸鈉水溶液 (移動相A) 22 3.3.3.3 60 %乙腈(移動相B) 22 3.4實驗步驟 23 3.4.1 菌株培養 23 3.4.1.1 培養微生物於LB medium plate 23 3.4.1.2 培養微生物於2 mL LB medium 23 3.4.1.3 培養微生物於200 mL LB medium 23 3.4.1.4 培養微生物於150 mL TB medium 24 3.4.1.5 以IPTG對微生物進行誘導 24 3.4.1.6 收集微生物 24 3.4.2 純化藍藻蛋白 24 3.4.2.1 水溶性藍藻蛋白純化步驟 25 3.4.2.2 非水溶性藍藻蛋白純化步驟 25 3.4.3 SDS-PAGE 25 3.4.4高效液相層析法 27 3.4.5 Plackett-Burman設計 28 3.4.5.1選擇PB因子 28 3.4.5.2 PB因子的上下限 28 3.4.5.3 使用Plackett-Burman方法設計出實驗 31 3.4.6 培養基最佳化-Response Surface 32 第四章 結果與討論 33 4.1 Plackett-Burman方法 33 4.1.1 PB因子的預篩選 33 4.1.2 Plackett-Burman設計 34 4.1.2.1 Response: Optical density (O.D.) 34 4.1.2.1 Response: inCGP Yield 38 4.1.2.1 Response: sCGP Yield 41 4.1.2.1 Response: CGP Yield 43 4.1.2.1 Response: inCGP/sCGP yield retio 46 4.2培養基最適化-Response Surface 49 4.2.1 Fit Summary 49 4.2.2變異數分析Analysis of variance (ANOVA) 51 4.2.3 Residual vs. Run 53 4.2.4 最佳化 53 4.2.5 成本計算 54 4.2.6 使用高效液相層析法分析藍藻蛋白 56 第五章 結論 59 附錄 60 參考文獻 83

1. Olbrich, H., The molasses. Biotechnologie-Kempe GmbH, 2006: p. 128.
2. Nakata, H., Tamura, M., Shintani, T., & Gomi, K., Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types. Journal of Bioscience and Bioengineering, 2014. 117(6): p. 715-719.
3. Lay, C. H., Wu, J. H., Hsiao, C. L., Chang, J. J., Chen, C. C., & Lin, C. Y., Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. International Journal of Hydrogen Energy, 2010. 35(24): p. 13445-13451.
4. Ghorbani, F., Younesi, H., Sari, A. E., & Najafpour, G., Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renewable Energy, 2011. 36(2): p. 503-509.
5. Liu, F., Li, W., Ridgway, D., Gu, T., & Shen, Z., Production of poly-β-hydroxybutyrate on molasses by recombinant Escherichia coli. Biotechnology Letters, 1998. 20(4): p. 345-348.
6. Chan, S., S. Kanchanatawee, and K. Jantama, Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Bioresource Technology, 2012. 103(1): p. 329-336.
7. Shukla, V. B., Zhou, S., Yomano, L. P., Shanmugam, K. T., Preston, J. F., & Ingram, L. O., Production of d (−)-lactate from sucrose and molasses. Biotechnology Letters, 2004. 26(9): p. 689-693.
8. Çalık, P. and H. Levent, Effects of pretreated beet molasses on benzaldehyde lyase production by recombinant Escherichia coli BL21 (DE3) pLySs. Journal of Applied Microbiology, 2009. 107(5): p. 1536-1541.
9. Ye, Q., Li, X., Yan, M., Cao, H., Xu, L., Zhang, Y., Chen, Y., Xiong, J., Ouyang, P., Ying, H., High-level production of heterologous proteins using untreated cane molasses and corn steep liquor in Escherichia coli medium. Applied Microbiology and Biotechnology, 2010. 87(2): p. 517-525.
10. Bae, S. and M. Shoda, Bacterial cellulose production by fed‐batch fermentation in molasses medium. Biotechnology Progress, 2004. 20(5): p. 1366-1371.
11. Makkar, R.S. and S.S. Cameotra, Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. Journal of the American Oil Chemists' Society, 1997. 74(7): p. 887-889.
12. Nishinari, K., Fang, Y., Guo, S., & Phillips, G. O., Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids, 2014. 39: p. 301-318.
13. Ashaolu, T.J. and C.T. Yupanqui, Suppressive activity of enzymatically-educed soy protein hydrolysates on degranulation in IgE-antigen complex-stimulated RBL-2H3 cells. Functional Foods in Health and Disease, 2017. 7(7): p. 545-561.
14. Ashaolu, T.J., Protein Hydrolysates and Their Impact on Gut Microbiota: An. 2019.
15. Ashaolu, T.J., Applications of soy protein hydrolysates in the emerging functional foods: a review. International Journal of Food Science & Technology, 2020. 55(2): p. 421-428.
16. Tsou, M. J., Kao, F. J., Tseng, C. K., & Chiang, W. D., Enhancing the anti-adipogenic activity of soy protein by limited hydrolysis with Flavourzyme and ultrafiltration. Food Chemistry, 2010. 122(1): p. 243-248.
17. Martínez, K. D., Sanchez, C. C., Ruíz-Henestrosa, V. P., Patino, J. M. R., & Pilosof, A. M., Effect of limited hydrolysis of soy protein on the interactions with polysaccharides at the air–water interface. Food Hydrocolloids, 2007. 21(5-6): p. 813-822.
18. Kwon, S., Lee, P. C., Lee, E. G., Chang, Y. K., & Chang, N., Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology, 2000. 26(2-4): p. 209-215.
19. Xiao, Z. J., Liu, P. H., Qin, J. Y., & Xu, P., Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Applied Microbiology and Biotechnology, 2007. 74(1): p. 61-68.
20. Borzi, A., Le comunicazioni intracellulari delle Nostochinee. Malpighia, 1887. 1: p. 28-74.
21. Simon, R., Inclusion bodies in the cyanobacteria: cyanophycin, polyphosphate, polyhedral bodies. The Cyanobacteria., 1987: p. 199-225.
22. Simon, R.D. and P. Weathers, Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1976. 420(1): p. 165-176.
23. Simon, R.D., The biosynthesis of multi-L-arginyl-poly (L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochimica et Biophysica Acta (BBA)-Enzymology, 1976. 422(2): p. 407-418.
24. Mackerras, A.H., N.M. de Chazal, and G.D. Smith, Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. Microbiology, 1990. 136(10): p. 2057-2065.
25. Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W., & Volkmer‐Engert, R., Biosynthesis of the cyanobacterial reserve polymer multi‐L‐arginyl‐poly‐L‐aspartic acid (cyanophycin) Mechanism of the cyanophycin synthetase reaction studied with synthetic primers. European Journal of Biochemistry, 2000. 267(17): p. 5561-5570.
26. Kroll, J., S. Klinter, and A. Steinbüchel, A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Applied Microbiology and Biotechnology, 2011. 89(3): p. 593-604.
27. Simon, R.D., Cyanophycin granules from the blue-green alga Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine. Proceedings of the National Academy of Sciences, 1971. 68(2): p. 265-267.
28. Lang, N.J., The fine structure of blue-green algae. Annual Reviews in Microbiology, 1968. 22(1): p. 15-46.
29. Hai, T., F.B. Oppermann-Sanio, and A. Steinbüchel, Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19. FEMS Microbiology Letters, 1999. 181(2): p. 229-236.
30. Koop, A., Voss, I., Thesing, A., Kohl, H., Reichelt, R., & Steinbüchel, A., Identification and localization of cyanophycin in bacteria cells via imaging of the nitrogen distribution using energy-filtering transmission electron microscopy. Biomacromolecules, 2007. 8(9): p. 2675-2683.
31. Aboulmagd, E., F.B. Oppermann-Sanio, and A. Steinbüchel, Purification of Synechocystis sp. strain PCC6308 cyanophycin synthetase and its characterization with respect to substrate and primer specificity. Applied and Environmental Microbiology, 2001. 67(5): p. 2176-2182.
32. Ziegler, K., Diener, A., Herpin, C., Richter, R., Deutzmann, R., & Lockau, W., Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi‐L‐arginyl‐poly‐L‐aspartate (cyanophycin). European Journal of Biochemistry, 1998. 254(1): p. 154-159.
33. Neumann, K., Stephan, D. P., Ziegler, K., Hühns, M., Broer, I., Lockau, W., & Pistorius, E. K., Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnology Journal, 2005. 3(2): p. 249-258.
34. Mooibroek, H., Oosterhuis, N., Giuseppin, M., Toonen, M., Franssen, H., Scott, E., Sanders, J., Steinbüchel, A., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology, 2007. 77(2): p. 257-267.
35. Tlapak-Simmons, V. L., Baggenstoss, B. A., Clyne, T., & Weigel, P. H., Purification and lipid dependence of the recombinant hyaluronan synthases from streptococcus pyogenes andstreptococcus equisimilis. Journal of Biological Chemistry, 1999. 274(7): p. 4239-4245.
36. Schwamborn, M., Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo-and copolymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 39-45.
37. Mansouri, S., Cuie, Y., Winnik, F., Shi, Q., Lavigne, P., Benderdour, M., Beaumont, E., Fernandes, J. C., Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials, 2006. 27(9): p. 2060-2065.
38. Plackett, R.L. and J.P. Burman, The design of optimum multifactorial experiments. Biometrika, 1946. 33(4): p. 305-325.
39. Gilmour, S.G., Response surface designs for experiments in bioprocessing. Biometrics, 2006. 62(2): p. 323-331.
40. Bruns, R.E., I.S. Scarminio, and B. de Barros Neto, Statistical design-chemometrics. 2006: Elsevier.
41. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.
42. Vadde, K. K., Syrotiuk, V. R., & Montgomery, D. C. (2006). Optimizing protocol interaction using response surface methodology. IEEE Transactions on Mobile Computing, 5(6), 627-639.
43. Ait-Amir, B., P. Pougnet, and A. El Hami, Meta-Model Development, in Embedded Mechatronic Systems 2. 2020, Elsevier. p. 157-187.
44. Moore, S., Spackman, D. H., & Stein, W. H. (1958). Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Analytical Chemistry, 30(7), 1185-1190.
45. Koop, D. R., Morgan, E. T., Tarr, G. E., & Coon, M. J. (1982). Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. Journal of Biological Chemistry, 257(14), 8472-8480.
46. Bidlingmeyer, B.A., S.A. Cohen, and T.L. Tarvin, Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography B: Biomedical Sciences and Applications, 1984. 336(1): p. 93-104.
47. Khalilzadeh, R., Shojaosadati, S. A., Bahrami, A., & Maghsoudi, N., Over-expression of recombinant human interferon-gamma in high cell density fermentation of Escherichia coli. Biotechnology Letters, 2003. 25(23): p. 1989-1992.
48. Tseng, W. C., Fang, T. Y., Cho, C. Y., Chen, P. S., & Tsai, C. S. (2012). Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene. Biotechnology Progress, 28(2), 358-363..

QR CODE