簡易檢索 / 詳目顯示

研究生: 廖彥宏
Yan-Hong Liao
論文名稱: 依據數據流的發展建立零件創研流程與近似最佳化切片法之動態排程暨相關知識庫建立
Dataflow development-based development of innovation research process of parts and dynamic scheduling of quasi-optimized slice method as well as establishment of the related knowledgebase
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 王國雄
Kuo-Shong Wang
林榮慶
Zone-Ching Lin
成維華
Wei-Hua Cheng
黃佑民
You-Min Huang
楊條和
Tyau-Her Young
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 429
中文關鍵詞: 總流程時間近似最佳化切片法動態排程LED集魚燈修正式Fuzzy MOORA雲端運算關聯式知識庫
外文關鍵詞: total flow time, quasi-optimized slice method, dynamic scheduling, LED fishing light, modified fuzzy MOORA, cloud computing, relational knowledgebase
相關次數: 點閱:240下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用Petri Net資訊流結合Timed Petri Net理論、Stochastic Petri Net理論、加工工件之暫存區Petri Net (Petri Net Modeling of Buffers)、整合製程規劃及近似最佳化切片法之動態排程及機台故障之Petri Net整合架構,應用於LED集魚燈創研混和雲,以及建立計算數據及時間參數的生產時間之LED集魚燈創研流程設計與製造流程模型。
    本文提出了近似最佳化切片法之動態排程用於無機台故障與有機台故障之製造系統的機台及無人搬運車,計算不同排程的總流程時間公式,並提出逐步計算每個subnet不同機台排程之最短總流程時間,得出第一個subnet最短總流程時間的排程,再將其用於計算連接下一個subnet不同機台的排程,計算出最短總流程時間的排程,如此逐步計算,最後得出製造系統全部機台近似最短總流程時間的排程規劃。
    本文為了佐證出無機台故障及有機台故障的近似最佳化切片法之動態排程具體改善的步驟,先用LED牙科燈的兩種不同零件進行(1)加工機台無故障,(2)加工機台異常需短時間修護,以及(3)加工機台故障需較長時間修護之製程規劃及動態排程為案例,將不同工作性質的機台分成不同的subnet,然後依不同製程規劃建立包括等待時間、搬運時間、加工時間等參數計算,並比較出加工兩個不同零件所需之每個subnet最短總流程時間(Total Flow Time)的排程。
    最後得出LED牙科燈兩個不同零件加工的較佳排程。本文再將上述近似最佳化切片法之動態排程的計算方法應用於LED集魚燈,做出加工LED集魚燈的兩個不同零件時,針對無故障、加工機台異常需短時間修護、以及加工機台較長時間的故障近似最佳化切片法之動態排程分析,計算出各案例的最短總流程時間,本文並建立LED集魚燈的加工兩個不同零件時,針對上述機台之故障加工機台需短時間修復,以及加工機台故障需較長時間修復的Petri Net理論圖形。
    本文又將Petri Net數據流應用於LED集魚燈之結合修正式Fuzzy DANP之修正式Fuzzy MOORA方法,來進行評選出優先產品技術改善方案,建立其Petri Net流程模型。本文亦將Petri Net資訊流相關理論、設計及製造流程規劃所需的相關知識,及結合修正式Fuzzy DANP之修正式Fuzzy MOORA等設計與製造相關理論知識與相關專利知識,輸入擴充至創研流程相關理論知識私有雲及LED集魚燈專利知識庫中,如此可增加LED集魚燈相關知識,讓使用者易於學習,使其能應用於創研流程架構模型。


    The thesis applies Petri net information flow to combine timed Petri net theory, Stochastic Petri net theory, Petri net modeling of buffers, integrated process planning, dynamic scheduling of quasi-optimized slice method and machine failure to establish integration structure, for application to pioneering research hybrid cloud of LED fishing light, as well as establishment of LED fishing light’s pioneering research workflow design and process workflow model of production time that covers calculation data and time parameters.
    The thesis proposes the dynamic scheduling of quasi-optimized slice method for application to the equation that calculates the total flow time of different schedules of manufacturing system concerning with machines and unmanned transport vehicles without machine failure and with machine failure. The paper also proposes step-by-step calculation of the shortest total flow time of the schedules of different machines in each subnet, thus achieving the schedule of the shortest total flow time of the first subnet. It is subsequently applied to calculation of the schedules of different machines connecting the next subnet, and then the schedule of the shortest total flow time is calculated. After step-by-step calculation, the thesis finally obtains the schedule planning of the quasi-shortest total flow time of all the manufacturing system machines.
    In order to prove the concrete improvement steps of dynamic scheduling of quasi-optimized slice method for those without machine failure and with machine failure, the thesis firstly uses two different parts of LED dental light to perform processing. Process planning and dynamic scheduling of the following 3 different cases are studied: (1) Without machine failure; (2) The processing machine being abnormal in need of repair for a short period of time; and (3) The processing machine encountering failure in need of repair for a longer period of time. The thesis divides the machines of different work natures into different subnets, after that, according to different process plans, the thesis establishes different parameters for calculation, including waiting time, transport time and processing time, and then compares the schedules of the shortest total flow time in each subnet required for processing of two different parts.
    Finally, the thesis achieves a better schedule for processing of two different parts of LED dental light. The thesis further applies the abovementioned calculation method of dynamic scheduling of quasi-optimized slice method to LED fishing light. when processing of two different parts of LED fishing light is completed, focusing on the dynamic scheduling analysis of quasi-optimized slice method for the 3 cases of without machine failure, the processing machine being abnormal in need of repair for a short period of time, as well as the processing machine encountering failure in need of repair for a longer period of time, the thesis calculates the shortest total flow time for each case. Besides, during processing of two different parts of LED fishing light, the thesis also establishes Petri net theoretical figures for the abovementioned cases of the processing machine encountering failure in need of repair for a short period of time, as well as the processing machine encountering failure in need of repair for a longer period of time.
    The thesis also applies Petri net dataflow to LED fishing light’s modified fuzzy MOORA method being combined with modified fuzzy DANP, in order to perform selection of a prioritized product technology improvement plan and establish its Petri net workflow model. For the related theories of Petri net information flow, the related knowledge required for design and process flow planning, the design- and manufacturing-related theoretical knowledge concerning the modified fuzzy MOORA being combined with the modified fuzzy DANP, as well as the related patent knowledge, the thesis enters and expands all of them to the pioneering research workflow-related theoretical knowledge private cloud and the knowledgebase of LED fishing light patents. By doing so, the related knowledge of LED fishing light can be increased, enabling users to learn the knowledge more easily and apply it to pioneering research of the workflow framework model.

    摘要 I Abstract IV 誌謝 VII 目錄 VIII 圖目錄 XVII 表目錄 XXI 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3文獻回顧 5 1.4 論文架構 12 第二章 相關理論介紹 16 2.1 Petri Net理論介紹 16 2.2 Petri Net定義及符號介紹 16 2.2.1 Petri Net理論之數據流計算(Datafolw Computation) 22 2.2.2 Timed Petri Net理論 23 2.2.3 Petri Net資訊流介紹 24 2.2.4 Stochastic Petri Net理論 25 2.2.5 暫存區之Petri Net模型 31 2.2.6 製程規劃及動態排程理論之Petri Net模型 35 2.3雲端運算概念介紹 43 2.4 PHP網路語言介紹 47 2.5關聯式知識庫系統介紹 49 第三章 應用雲端運算概念建立創研流程混合雲與結合相關理論建立LED集魚燈之創研流程 51 3.1 創研流程混合雲建構介紹 51 3.2 Petri Net創研流程架構系統流程圖與創研流程相關理論知識私有雲建構介紹 53 3.3 中英日專利檢索公有雲介紹 57 3.4關聯式專利知識庫與工程知識庫輸入應用服務私有雲建構 61 3.5關聯式專利知識庫與工程知識庫應用服務私有雲建構 63 3.6遠端修正式TRIZ與商業軟體私有雲建構 65 第四章 近似最佳化切片法之動態排程理論 68 4.1 切片分析法理論 68 4.2 切片分析法之Petri Net模型 70 4.3 無機台故障的近似最佳化切片法之動態排程 73 第五章 有機台故障的近似最佳化切片法之動態排程及Petri Net模型 83 5.1 有機台故障的近似最佳化切片法動態排程 83 5.2 機台發生異常的修復之Petri Net模型 91 第六章 以LED牙科燈為案例之近似最佳化切片法之動態排程的應用 96 6.1 本研究加工之LED牙科燈零件 96 6.2 本研究之工廠佈置圖 97 6.3 依工廠佈置之製程規劃方法及Petri Net模型 98 6.4 依Petri Net模型制定LED牙科燈零件無機台故障之工作流程時間計畫表 111 6.4.1 依Petri Net模型制定LED牙科燈零件無機台故障之S_1工作流程時間計畫表 111 6.4.2 依Petri Net模型制定LED牙科燈零件無機台故障之S_1 〖到S〗_2工作流程時間計畫表 115 6.4.3 依Petri Net模型制定LED牙科燈零件無機台故障之S_1到S_3工作流程時間計畫表 124 6.5 依Petri Net模型制定LED牙科燈零件加工中心機異常需短時間修護之工作流程時間計畫表 134 6.5.1 依Petri Net模型制定LED牙科燈零件加工中心機異常需短間修護300秒之S_1工作流程時間計畫表 135 6.5.2 依Petri Net模型制定LED牙科燈零件加工中心機異常需短時間修護300秒之S_1到S_2工作流程時間計畫表 138 6.5.3 依Petri Net模型制定LED牙科燈零件加工中心機異常需短時間修護300秒之S_1到S_3工作流程時間計畫表 144 6.5.4本研究兩種零件各一件加工中心機異常需短時間修護100秒之製程規劃及近似最佳化切片法之動態排程案例 149 6.5.5本研究兩種零件各一件加工中心機異常需短時間修護50秒之製程規劃及近似最佳化切片法之動態排程案例 151 6.6 依Petri Net模型制定LED牙科燈零件加工中心機異常需長時間修護使用替代製程之工作流程時間計畫表 153 6.6.1 依Petri Net模型制定LED牙科燈零件加工中心機異常需長時間修護使用替代製程之S_1工作流程時間計畫表 153 6.6.2 依Petri Net模型制定LED牙科燈零件加工中心機異常需長時間修護使用替代製程之S_1到S_2工作流程時間計畫表 157 6.6.3 依Petri Net模型制定LED牙科燈零件加工中心機異常需長時間修護使用替代製程之S_1到S_3工作流程時間計畫表 162 6.7 本研究兩種零件各兩件加工中心機異常需短時間修護及長時間修護使用替代製程之門檻時間 164 第七章 以LED集魚燈為案例之近似最佳化切片法之動態排程的應用 168 7.1 本研究加工之LED集魚燈零件 168 7.2 本研究之工廠佈置圖 169 7.3 依工廠佈置之製程規劃方法 171 7.4 依Petri Net模型制定LED集魚燈零件無機台故障之工作流程時間計畫表 177 7.4.1 依Petri Net模型制定LED集魚燈零件無機台故障之S_1工作流程時間計畫表 177 7.4.2 依Petri Net模型制定LED集魚燈零件無機台故障之S_1到S_2工作流程時間計畫表 180 7.4.3 依Petri Net模型制定LED集魚燈零件無機台故障之S_1到S_3工作流程時間計畫表 185 7.5 依Petri Net模型制定LED集魚燈零件加工中心機異常需短時間修護之工作流程時間計畫表 188 7.5.1 依Petri Net模型制定LED集魚燈零件加工中心機異常需短時間修護400秒之S_1工作流程時間計畫表 189 7.5.2 依Petri Net模型制定LED集魚燈零件加工中心機異常需短時間修護400秒之S_1到S_2工作流程時間計畫表 192 7.5.3 依Petri Net模型制定LED集魚燈零件加工中心機異常需短時間修護400秒之S_1到S_3工作流程時間計畫表 196 7.5.4 本研究兩種零件各一件加工中心機異常需短時間修護300秒之製程規劃及近似最佳化切片法之動態排程案例 199 7.5.5 本研究兩種零件各一件加工中心機異常需短時間修護50秒之製程規劃及近似最佳化切片法之動態排程案例 201 7.6 依Petri Net模型制定LED集魚燈零件加工中心機異常需長時間修護使用替代製程之工作流程時間計畫表 202 7.6.1 依Petri Net模型制定LED集魚燈零件加工中心機異常需長時間修護使用替代製程之S_1工作流程時間計畫表 203 7.6.2 依Petri Net模型制定LED集魚燈零件加工中心機異常需長時間修護使用替代製程之S_1 〖到S〗_2工作流程時間計畫表 206 7.6.3 依Petri Net模型制定LED集魚燈零件加工中心機異常需長時間修護使用替代製程之S_1 〖到S〗_3工作流程時間計畫表 210 7.7 本研究兩種零件各兩件加工中心機異常需短時間修護及長時間修護使用替代製程之門檻時間 214 第八章 結合Petri Net理論與Petri Net數據流之LED集魚燈之結合修正式FUZZY DANP與修正式FUZZY MOORA之決策程序評選優先改良方案 219 8.1模糊集簡介 219 8.1.1歸屬函數 220 8.1.2標準交集(Standard Intersection) 222 8.1.3 α-截集(α-cut) 222 8.2模糊分析網路程序法(Fuzzy ANP)決策程序 223 8.3模糊決策實驗室分析法(Fuzzy DEMATEL)之程序 224 8.4 結合修正式FUZZY DANP與修正式FUZZY MOORA之決策程序評選優先改良方案 227 8.4.1 MOORA分析法介紹 227 8.4.2 MOORA分析法基本概念 227 8.4.3 FUZZY MOORA分析法基本概念 228 8.4.4 修正式模糊基於比率的多目標優化分析法(Fuzzy-MOORA)決策程序 228 8.5結合修正式模糊DANP與修正式模糊MOORA決策步驟 231 第九章 Petri Net資訊流結合Timed Petri Net理論、Petri Net數據流、Stochastic Petri Net理論、加工工件暫存區Petri Net及整合製程規劃和近似最佳化切片法之動態排程之LED集魚燈之創研流程混合雲流程建構 256 9.1 Petri Net基本理論之LED集魚燈之創研流程混合雲流程建構 256 9.2 LED集魚燈結合Petri Net理論之工程與製程知識庫設計與製程應用服務私有雲模型建構 262 9.3 LED集魚燈結合Petri Net基本理論之專利知識設計與製程庫應用服務私有雲流程建構 266 9.4 LED集魚燈結合Petri Net基本理論之遠端修正式TRIZ私有雲流程建構 272 9.5 LED集魚燈結合Petri Net基本理論之遠端商業軟體私有雲流程建構 277 9.6 LED集魚燈結合Petri Net基本理論之某一製程相關改良技術流程建構 282 9.7 Petri Net資訊流結合Petri Net理論結合Stochastic Petri Net理論、Timed Petri Net理論與暫存區之Petri Net模型之LED集魚燈生產流程建構 286 第十章 LED集魚燈關聯式知識庫欄位設計 332 10.1 關聯式工程知識庫設計與製程欄位介紹 332 10.2 關聯式專利知識庫設計與製程欄位介紹 340 第十一章 結論 350 附錄 353 參考文獻 387

    [1] Shen, R. L., Yang, C. Y. and Lee, J. H., “Analysis of the problem description in the Algorithm for Inventive Problem Solving using Petri nets”, Knowledge-Based Systems, Vol. 35, pp.290-303 (2012).
    [2] Osswald, D., Gorges, N. and Worn, H., “Reactive Hand-Arm Coordination for a Humanoid Robot using Extended Petri-Nets” IEEE/ASME international conference, Issue 4-7, pp. 1-6 (2007).
    [3] Liu, H., Jiang, Z. and Fung, Y. K., “Modeling of Large-Scale Complex re-Entrant Manufacturing Systems by Extended Object-Oriented Petri Nets” International Journal of Advanced Manufacturing Technology, Vol.27, pp.190-204 (2005).
    [4] Choi, I., Park, C. and Lee, C., “A Transactional Workflow Model for Engineering/Manufacturing Processes”, International Journal of Computer Integrated Manufacturing, Vol. 15, No.2, pp. 178-192 (2002).
    [5] Grigorova, K., “Process Modelling using Petri Nets”, International Conference on Computer Systems and Technologies, Sofia, Bulgaria, (2003).
    [6] Buhler, P. A. and Vidal, J. M., “Towards Adaptive Workflow Enactment Using Multiagent Systems”, Information Technology and Management, Vol. 6, Issue 1, pp. 61-87 (2005).
    [7] Yu-guang, Z., Kai, X. and Yong, Z., “Modeling and analysis of panel hull block assembly system through timed colored Petri net”, Marine Structures, Vol. 24: pp. 570-580 (2011).
    [8] Zuberek, W. M., “Cluster Tools with Chamber Revisiting-Modeling and Analysis Using Timed Petri Nets”, IEEE Transactions On Semiconductor Manufacturing, Vol. 17, No. 3, pp. 333-344 (2004).
    [9] Cheng, Y. Y., Rong, K. S. and Yu, C. C., “Application of Petri Nets Do Deadlock Avoidance in iPad-like Manufacturing Systems”, Journal of Intelligent Manufacturing, pp. 1-16 (2014).
    [10] Yingying, Su., Jianrong, Wang. and Liang, Tang., “Design and Implementation of Workflow Engine for Process Planning Based on GSPN”, IEEE, Intelligent Information Technology Applications, Vol. 1, pp.721-725 (2008).
    [11] Lin, C. and Marinescu, D. C., “stochastic hight-level Petri net and applications”, IEEE, Transaction on computers, Vol. 37, No7(1988).
    [12] Hatono, I., Yamagat, K. and Tamura, H “Modeling and online scheduling of flexible manufacturing systems using stochastic Petri nets” IEEE Transaction on Software Engineering, Vol. 17, No. 2, February (1991).
    [13] Tao, C. C. and Hung, M. C., “隨機派翠網路應用於臺鐵捷運化之運行調度模擬模式建構與分析”, Transportation Planning Journal, Vo1. 44 No. 4, pp. 333~372 (2015).
    [14] MengChu, Z. and Frank, D., “Petri net Modelind of Buffers in Automatic Manufacturing system”, IEEE, TRANSACTIONS ON SYSTEMS, Vol. 26, No. 1, February, (1996).
    [15] MengChu, Z. and Frank, D., “Modeling Buffers in Automated Manufacturing Systems Using Petri Nets”, IEEE, Proceedings. Rensselaer's Second International Conference on Computer Integrated Manufacturing, (1990).
    [16] Zhang, W., Freiheit, T. and Yang, H., “Dynamic scheduling in flexible assembly system based on timed Petri nets model”, Robotics and Computer-Integrated Manufacturing . Vol. 21, pp. 550-558 (2005).
    [17] Sha, D. Y. and Lin, H. H., “A multi-objective PSO for job-shop scheduling problems”, Expert Systems with Applications, Vol. 35, pp. 1065-1070 (2010).
    [18] Ezpeleta, J., Colom, J. M. and Martinez, J., “A Petri Net Based Deadlock Prevention Policy for Flexible Manufacturing Systems”, Ieee, Transactions On Robotics And Automation, Vol. 11, No. 2, April, (1995).
    [19] Jong-Kun LEE, Ouajdi KORBAA, and Jean-Claude GENTlNA
    “Slices analysis method of Petri Nets in FMS using the Transitive Matrix”, IFAC Proceedings,Vol 34, Issue 17, Pages 225-230(2001).
    [20] 呂明山和孫旻聰, 「結合派翠網路及基因演算法於彈性製造系統零件途程動態派遣的應用」,技術學刊,第二十六卷,第一期,民國一百年。
    [21] Wu, W. W. and Lee, Y. T., “Developing Global Managers’ Competencies Using the Fuzzy DEMATEL Method,” Expert Systems with Applications, Vol.32, pp.499-507 (2007).
    [22] Tuzkaya, U. R. and Önüt, S., “A fuzzy analytic network process based approach to transportation-mode selection between Turkey and Germany: A case study,” Information Sciences, Vol.178, pp.3133-3146 (2008).
    [23] Ayag, Z., and Özdemir, R. G., “A hybrid approach to concept selection through fuzzy analytic network process,” Computers and Industrial Engineering, Vol.56, pp.368-379 (2009).
    [24] Uygun, Ö. and Dede, A., “Performance evaluation of green supply chain management using integrated fuzzy multi-criteria decision making techniques,” Computers & Industrial Engineering, Vol.102, pp.502-511 (2016).
    [25] Vinodh, S., Sai Balagi, T. S., and Patil, A., “A hybrid MCDM approach for agile concept selection using fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS,” International Journal of Advanced Manufacturing Technology, Vol.83, pp.1979-1987 (2016).
    [26] Brauers, and w.,Zavadskas, E. K., “The MOORA method and its application to privatization in a transition economy” Control and Cybernetics, Vol.35, No.2(2006)
    [27] Shanker, C., “Applications of the MOORA method for decision making in manufacturing environment” Manuf Technol, Vol.54, pp.1155-1166 (2011)
    [28] Hasan, D.,Serhat, and Y.,Luis, M., “Interval type 2-based hybrid fuzzy evaluation of financial services in E7 economies with DEMATEL-ANP and MOORA methods” Applied Soft Computig Journal, pp.186-202 (2019)
    [29] Ashoke, K. B., “Supplier selection using extended IT2 fuzzy TOPSIS and IT2 fuzzy MOORA considering subjective and objective factors” Soft Computing, Vol.24, pp.8899-8915 (2020)
    [30] Chapman, C. B. and Pinfold, M., “Design Engineering-Aneed to Rethink the Solution Using Knowledge Based Engineering” Knowledge-Based Systems, Vol. 12, pp. 257-267 (1999).
    [31] Jones, P. L. and Harrison, A., “The Application of Knowledge-BasedTechniques to the Monitoring of Computers in a Large Heterogeneous Distributed Environment”, Knowledge-Based Systems, Vol. 19, pp. 565-575 (2006).
    [32] Miyamoto, S., Nonoguchi, S., Matsuno, J. and Matsumura, T., “Application of Knowledge Based Modeling to Detail Structure Design for Shipbuilding”, ICCAS 2002, pp. 717-729 (2002).
    [33] Codd, E. F., “A relational model of data for large shared data banks”, Communications of the ACM, Vol. 13, No. 6, pp. 377-387 (1970).
    [34] Codd, E. F., “The Relational Model for Database Management”, Version 2, Addison-WesleyLongman Publishing Co, Boston, (1990).
    [35] Xu, X., “From cloud computing to cloud manufacturing”, Robotics and Computer-Integrated Manufacturing, Vol. 28, Issue 1, pp. 75-86 (2012).
    [36] Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7296 LNCS , pp. 370-376 .
    [37] MIPRO 2010 - 33rd International Convention on Information and Communication Technology, Electronics and Microelectronics, Proceedings , art. no. 5533317 , pp. 344-349.
    [38] 簡偉德,「應用Timed Petri Net理論於LED投射燈創研流程與組裝流程分析」,碩士論文,國立台灣科技大學機械工程學系,民國104年。
    [39] 沈宗逸,「應用Stochastic Petri Net理論於LED舞台燈創研流程與組裝流程分析」,碩士論文,國立台灣科技大學機械工程學系,民國105年。
    [40] 張洪嘉,「依據數據流的發展建立LED軌道燈之創研流程與生產流程分析暨相關知識庫建立」,碩士論文,國立台灣科技大學機械工程學系,民國106年。
    [41] 薛宇祺,「依據數據流的發展建立創研流程與零件製程規劃及動態排程分析暨相關知識庫建立」,碩士論文,國立台灣科技大學機械工程學系,民國107年。
    [42] Petri, C. A., “Kommunikation mit Automaten”. Schriften des Rheinisch-Westfälischen Institutes für Instrumentelle Mathematik an der Universität Bonn Nr. 2, (1962).
    [43] Peterson, J. L., “Petri Net Theory and the Modeling of Systems”, Prentice Hall Inc. NJ, USA. (1981).
    [44] Murata, T., “Petri Nets: Properties, Analysis and Applications”, Proceedings of The IEEE, Vol.77, No. 4, pp. 541-580, April. (1989).
    [45] WFMC, “Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011)”, Technical report, Workflow Management Coalition, Brussels, 1996.
    [46] Ramchandani, C., “Analysis of asynchronous concurrent systems by timed Petri nets”, Technical Report, Project MAC, TR 120, MIT, February 1974.
    [47] Florin, G. and Natkin, C. “Stochastic Petri nets: Properties, applications and tools”, Microelectronics Reliability, Vol. 31, Issue 4, pp. 669-697 (1991).
    [48] Hatono, I. and Yamagata, K. “Modeling and On-Line Scheduling of Flexible Manufacturing System Using Stochastic Petri Net”, Transaction On Software Engineering Vol. 17, No. 2, (1991).
    [49] Tüysüz, F. and Kahraman, C. “Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters”, Expert Systems with Applications, 3910–3920 (2010).
    [50] HITOMI. K., “Manufacturing Systems Engineering”, A unified approach to manufacturing technology andproduction management, (1996).
    [51] Chang, T. C , “An Introduction To Automated Process Planning System”, Prentice-hall,.(1954)
    [52] 「雲端運算的定義第十五版」,美國國家技術標準局(2009/7/10)
    [53] Ranjan, A., Kumar, R. and Dhar, J., “A Comparative Study between Dynamic Web Scripting Languages”, Second International Conference, ICDEM 2010, Tiruchirappalli, India, pp. 29-31, July. (2010).
    [54] Enderlin, I., Dadeau, F., Giorgetti, A. and Othman, B. A., “Praspel: A specification language for contract-based testing in PHP”, Lecture Notes in Computer Science, Vol. 7019, pp. 64-79 (2011).
    [55] 連方進,「應用代理人行為模式於質子交換模燃料電池創研流程及關聯式工程與專利知識庫改善」,碩士論文,國立台灣科技大學機械工程學系,民國98年。
    [56] Date, C. J., “An introduction to database system”, Addison-Wesley Inc, USA., pp. 445-464 (1997).
    [57] 張瓊誼,物件導向換資料庫系統之應用與研究,台中商專學報,第26 期 (1994)。
    [58] Zadeh, L. A., “Fuzzy Sets”, Information and Control, Vol.8, pp.338- 353, (1965).
    [59] 李允中、王小璠、蘇木春,模糊理論及其應用,全華圖書,台北 (2012)。
    [60] 萬絢、林明毅、陳宏杰,模糊理論應用與實務,儒林圖書,台北(2006)。
    [61] Han, W. M., Hsu, C. H. and Yeh, C. Y., “Using DEMATEL to Analyze the Quality Characteristics of Mobile Applications”, Proceedings of the 2014 International Conference on Future Information Engineering and Manufacturing Science, pp.131-134. (2014).
    [62] Saaty, T. L., Decision Making for Leaders:The Analytical Hierarchy Process for Decisions in a Complex World, Belmont, CA: Wadsworth. (1982).
    [63] Lin, C. J. and Wu, W. W.,“ A Causal Analytical Method for Group Decision-Makingunder Fuzzy Environment,” Expert Systems with Applications, Vol.34, No.1 , pp.205-213. (2008).

    QR CODE