簡易檢索 / 詳目顯示

研究生: 沈孟輝
Meng-Hui Shen
論文名稱: 運用低同調光干涉技術探討矽線波導製程誤差
Optical Low Coherence Interferometry to Quantify Silicon Wire Process Variation
指導教授: 徐世祥
Shih-Hsiang Hsu
李志堅
Chih-Chien Lee
口試委員: 李三良
San-Liang Lee
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 矽線波導低同調光干涉技術模態分割多路複用
外文關鍵詞: Silicon waveguide, Low-Coherence Optical Interference technique, Mode Division Muliplexing
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在矽線波導的元件中,光的相位變化會影響元件的波長響應,而相位改變的原因主要來自波導間有效折射率的變化。微環型諧振器 (Mircroring Resonator, MRR)與陣列波導光柵(Arrayed Waveguide Grating, AWG)作為矽線波導元件,不只要求濾波波段的精確,也需要將串擾(Crosstalk)降低,而影響這些的原因就是相位,這使得監測相位成為最重要的議題,因此本論文將會深入的討論矽線波導的相位及其改善的方法。
本論文設計並量測MRR與AWG等矽線波導元件的波長頻譜,運用低同調光源以及Mach-Zehnder干涉儀作為實驗架構主體,分析元件干涉波包,得知波包之間的同調長度,藉由將結果帶入模擬軟體,以此反推相位的變化,並且探討如何從設計端與製程配合改善,避免因相位導致濾波波段與串擾的異常。
而低同調光干涉技術也可以延伸應用在模態分割多路複用(MDM)的元件中,藉由TE0與TE1在波導中的有效折射率變化,以監測相位的方式,瞭解模態在波導之間的變化。


In the component of the Silicon waveguide, the phase change of the light affects the wavelength response of the component, and the cause of the phase change mainly comes from the change in the effective refractive index between the waveguides. Microring Resonator (MRR) and Arrayed Waveguide Grating (AWG) are main components that require not only the accuracy of the filter band but also reduce the crosstalk. The reason is Phase, which makes the monitoring phase the most important issue, so this thesis will discuss the various phases of the Silicon waveguide and how to improve it.
In this thesis, the wavelength spectra of filter elements such as MRR and AWG are designed and measured, and the Low-Coherent light source and Mach-Zehnder interferometer are used as the main body of the experimental framework. Analyze component interference wave packets to know the coherence length between wave packets. By pushing the results into the simulation software, the phase change is reversed and how it can be improved from design to process. Avoid abnormalities in filtering bands and crosstalk due to phase.
The Low-Coherence Optical Interference technique can also be extended to the components of Modal Division Multiplexing (MDM). The phase is monitored by the effective refractive index change of TE0 and TE1 in the waveguide. Learn about the modal changes between the waveguides.

第一章 導論 1.1簡介 1.2研究動機 1.3論文架構 第二章 理論與特性介紹 2.1波導結構 2.2單、多模條件 2.3雙折射效應 2.4波導傳輸損耗 2.4.1材料吸收損耗(Absorption Loss) 2.4.2洩漏損耗(Leakage Loss) 2.4.3彎曲損耗(Bending Loss) 2.4.4散射損耗(Scattering Loss) 2.5 Mazh-Zehnder干涉儀 第三章 模擬與研究方法 3.1光纖低同調干涉波包模擬 3.2模態分割多路複用(Mode Division Muliplexing, MDM) 3.2.1基本理論 3.2.2文獻探討 3.3 MDM元件設計與模擬 3.3.1多模干涉器(Multimode Interference) 3.3.2 MDM高速雙模開關 3.3.3 MDM光學模態選擇開關(MSS) 3.2.4 Y-junction上的寬帶MDM 第四章 實驗步驟 4.1波導耦合平台 4.1.1邊緣耦合 4.1.2光柵耦合 4.2 OFLCI系統架設 4.2.1輸出訊號確認 4.2.2兩級干涉波包 4.2.3高斯曲線擬合(Gaussian Curve Fitting) 4.3量測結果與分析 4.3.1微環型諧振器(Mircroring Resonator, MRR) 4.3.2陣列波導光柵(AWG) 4.3.3模態切換器 第五章 結論與未來展望 5.1結論 5.2未來展望 參考文獻

[1] Jalali, Bahram, and Sasan Fathpour. "Silicon photonics." Journal of lightwave technology 24.12 (2006): 4600-4615.
[2] Doerr, C. R., et al. "Bending of a planar lightwave circuit 2x2 coupler to desensitize it to wavelength, polarization, and fabrication changes." IEEE photonics technology letters 17.6 (2005): 1211-1213.
[3] Morino, Hisayasu, Takeo Maruyama, and Koichi Iiyama. "Reduction of wavelength dependence of coupling characteristics using si optical waveguide curved directional coupler." Journal of Lightwave Technology 32.12 (2014): 2188-2192.
[4] Chen, Sitao, et al. "Low-loss and broadband 2× 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers." Optics letters 41.4 (2016): 836-839.
[5] Wang, Yun, et al. "Compact broadband directional couplers using subwavelength gratings." IEEE Photonics Journal 8.3 (2016): 1-8.
[6] Soref, Richard A., Joachim Schmidtchen, and Klaus Petermann. "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2." IEEE Journal of Quantum Electronics 27.8 (1991): 1971-1974.
[7] Chan, Seong Phun, et al. "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section." Journal of lightwave technology 23.6 (2005): 2103.
[8] Aalto, Timo. Microphotonic silicon waveguide components. VTT Technical Research Centre of Finland, 2004.
[9] Ang, Kah-Wee, and Guo-Qiang Lo Patrick. "Si charge avalanche enhances APD sensitivity beyond 100 GHz." Laser focus world46.8 (2010).
[10] Dumon, Pieter, et al. "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography." IEEE Photonics Technology Letters 16.5 (2004): 1328-1330.
[11] Hibino, Yoshinori. "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs." IEEE Journal of selected topics in quantum electronics 8.6 (2002): 1090-1101.
[12] Sakai, G. Hara, and T. Baba, “Sharply bent optical waveguide on silicon-on-insulator substrate,” Proceedings of SPIE, Vol. 4283, pp. 610-618, 2001.
[13] E. A. J. Marcatili, “Bends in optical dielectric guides,” The Bell System Technical Journal, pp. 2103-2132, 1969.
[14] Heiblum, Mordehai, and Jay Harris. "Analysis of curved optical waveguides by conformal transformation." IEEE Journal of Quantum Electronics 11.2 (1975): 75-83.
[15] Vlasov, Yurii A., and Sharee J. McNab. "Losses in single-mode silicon-on-insulator strip waveguides and bends." Optics express12.8 (2004): 1622-1631.
[16] Subramaniam, Vijaya, et al. "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides." Journal of lightwave technology 15.6 (1997): 990-997.
[17] Lee, Kevin K., et al. "Effect of size and roughness on light transmission in a Si/SiO 2 waveguide: Experiments and model." Applied Physics Letters 77.11 (2000): 1617-1619.
[18] Marcuse, Dietrich. "Mode conversion caused by surface imperfections of a dielectric slab waveguide." Bell System Technical Journal 48.10 (1969): 3187-3215.
[19] Payne, F. P., and J. P. R. Lacey. "A theoretical analysis of scattering loss from planar optical waveguides." Optical and Quantum Electronics 26.10 (1994): 977-986.
[20] Grillot, F., et al. "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides." IEEE Photonics Technology Letters 16.7 (2004): 1661-1663.
[21] Dai, Daoxin. "Silicon nanophotonic integrated devices for on-chip multiplexing and switching." Journal of Lightwave Technology35.4 (2016): 572-587.
[22] Williams, Christopher, et al. "A source-synchronous architecture using mode-division multiplexing for on-chip silicon photonic interconnects." IEEE Journal of Selected Topics in Quantum Electronics 22.6 (2016): 473-481.
[23] Lu, Liangjun, et al. "16× 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers." Optics express 24.9 (2016): 9295-9307.
[24] Xiong, Yule, Rubana B. Priti, and Odile Liboiron-Ladouceur. "High-speed two-mode switch for mode-division multiplexing optical networks." Optica 4.9 (2017): 1098-1102.
[25] Priti, Rubana B., et al. "Mode selecting switch using multimode interference for on-chip optical interconnects." Optics letters42.20 (2017): 4131-4134.
[26] Love, John D., and Nicolas Riesen. "Single-, few-, and multimode Y-junctions." Journal of Lightwave Technology 30.3 (2011): 304-309.
[27] Wei, Hongzhen, et al. "Analyzing the MMI MZI optical switches by field transfer matrix method."
[28] Zhang, Zhenrong, Yu Yu, and Songnian Fu. "Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction." IEEE Photonics Journal 9.2 (2017): 1-6.
[29] Dakss, M. L., et al. "Grating coupler for efficient excitation of optical guided waves in thin films." Applied physics letters 16.12 (1970): 523-525.
[30] Waldhäusl, Ralf, et al. "Efficient coupling into polymer waveguides by gratings." Applied optics 36.36 (1997): 9383-9390.
[31] Van Laere, Frederik, et al. "Compact focusing grating couplers for silicon-on-insulator integrated circuits." IEEE Photonics Technology Letters 19.23 (2007): 1919-1921.
[32] Wang, Zefeng, et al. "New optical fiber micro-bend pressure sensors based on fiber-loop ringdown." Procedia Engineering 29 (2012): 4234-4238.

無法下載圖示 全文公開日期 2024/08/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE