簡易檢索 / 詳目顯示

研究生: 蔡馨儀
Shin-Yi Tsai
論文名稱: 針對數位時間延遲積分馬賽克影像的植基於類神經網路之去馬賽克演算法
Neural Network-Based Demosaicing Algorithm for DTDI mosaic Images
指導教授: 鍾國亮
Kuo-Liang Chung
陳秋華
Chyou-hwa Chen
口試委員: 洪西進
Shi-Jinn Horng
貝蘇章
Soo-Chang Pei
顏嗣鈞
Hsu-chun Yen
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 34
中文關鍵詞: 異質性映射去馬賽克演算法徑向基底類神經網路DTDI馬賽克影像
外文關鍵詞: Heterogeneity projection, demosaicing algorithm, Radial basis function (RBF) neural network, Digital time delay and integration (DTDI) mosaic
相關次數: 點閱:351下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植基於類神經網路,本論文提出一套針對在數位時間延遲積分馬賽克影像的去馬賽克演算法,而數位時間延遲積分馬賽克影像其主要使用於印刷工業之上。在所提出的方法中,首先,透過異質性映射法決定內插時的資料相依性。之後,再將所決定的資料相依性結合徑向基底類神經網路訓練濾波器,發展出一套高品質的去馬賽克演算法。透過數張常用的測試影像,實驗結果顯示,比較近年來所提出之五種演算法,本論文所提出之演算法在彩色訊號雜訊比與S-CIELAB 兩個主要彩色影像量度上,都能得到較佳的輸出影像品質。


    Based on neural network, this paper presents a novel demosaicing algorithm for digital time delay and integration (DTDI) mosaic images, which are suitable for industrial print inspection. According to the adaptive heterogeneity projection masks, the data dependence of the interpolation estimation can be first determined. Combining the determined data dependence and radial-basis function (RBF) neural network, a quality-efficient demosaicing algorithm for DTDI mosaic images is developed. Based on some popular test images, the proposed demosaicing algorithm has better image quality performance in terms of the color peak signal-to-noise ratio (CPSNR) and the S-CIELAB when compared with several previous demosaicing algorithms.

    1緒論 2自適化異質性映射與徑向基底函數類神經網路架構 2.1自適化異質性映射 2.2徑向基底類神經網路 3去馬賽克演算法 3.1離線訓練階段 3.2去馬賽克階段 4實驗結果 5結論 參考文獻 附錄

    [1]R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Trans. Consum. Electron., vol. 51, no.4, pp. 1260–1267, 2005.
    [2]B. E. Bayer, “Color imaging array,” U.S. Patent, no. 3971 065, 1976.
    [3]R. Huber-Mörk, H. Ramoser, H. Penz, K. Mayer, D. Heiss-Czedik, and A. Vrabl, “Region based matching for print process identification,” Pattern Recognit. Lett., vol. 28, no. 15, pp. 2037–2045, 2007.
    [4]J. Fürtler, E. Bodenstorfer, K. J. Mayer, J. Brodersen, D. Heiss-Czedik, H. Penz, C. Eckel, K. Gravogel, and H. Nachtnebel, “High performance camera module for fast quality inspection in industrial printing applications,” in Proc. of Electronic Imaging Conf. on Machine Vision Applications in Industrial Inspection, vol. 6503, pp. 65030J-1–65030J-12, 2007.
    [5]E. Bodenstorfer, J. Fürtler, J. Brodersen, K. J. Mayer, C. Eckel, K. Gravogel, and H. Nachtnebel, “High speed line-scan camera with digital time delay integration,” in Proc. of Electronic Imaging Conf. on Real Time Imaging, vol. 6496, pp. 64960I-1–64960I-10, 2007.
    [6]T. Sakamoto, C. Nakanishi, and T. Hase, “Software pixel interpolation for digital still camera suitable for a 32-bit MCU,” IEEE Trans. Consum. Electron., vol. 44, no. 4, pp. 1342–1352, 1998.
    [7]C. Larocheand and M. Prescott, “Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients,” US Patent, no. 5, pp. 373–322, 1994.
    [8]D. Heiss–Czedik, R. Huber–Mörk, D. Soukup, H. Penz, and B. L. Garc’ıa, “Demosaicing algorithms for area- and line-scan cameras in print inspection,” J. Vis. Commun. Image Represent., vol. 20, no. 6, pp. 389–398, 2009.
    [9]D.S. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive networks,” Complex Systems, vol. 2, no. 3, pp. 321-355, 1988.
    [10]J. E. Moody and C. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Computation, vol. 1, no. 2, pp. 281-294, 1989.
    [11]T. Poggio and F. Girosi, “Regularization algorithms for learning that are equivalent to multilayer networks,” Science, vol. 247, no. 4945, pp. 978-982, 1990.
    [12]K. L. Chung, W. J. Yang, W. M. Yan, and C. C. Wang, “Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneity-projection,” IEEE Trans. Image Processing, vol. 17, no. 12, pp. 2356-2367, 2008.
    [13]K. L. Chung, W.J. Yang, P.Y. Chen, W.M. Yan, and C.S. Fuh, “ New joint demosaicing and zooming algorithm for color filter array,” IEEE Trans. Consumer Electronics, vol. 55, no. 3, pp.1477-1486, 2009.
    [14]K. L. Chung, W.J. Yang, J.H. Yu, W.M. Yan, and C.S. Fuh, “Novel quality-effective zooming algorithm for color filter array,” Journal of Electronic Imaging, vol. 19, no. 1, pp. 013005-1-013005-15, 2009.
    [15]S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 6, pp. 503-513, 2003.
    [16]D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal representations by error propagation,” Parallel Distributed Processing, vol. 1, pp. 318–362, 1986.
    [17]M. Riedmiller and H. Braun, “A direct adaptive method for faster back propagation learning: the RPROP algorithm,” in: Proc. of the International Conf. on Neural Network, vol. 1, pp.586-591, 1993.
    [18][Online]. Available: http://www.site.uottawa.ca/~edubois/demosaicking/.
    [19]R. W. G. Hunt, Measuring Colour, 2nd ed. Chichester, U.K.: Ellis Horwood, 1995.
    [20]W. Lu and Y. P. Tan, “Color filter array demosaicking: New method and performance measures,” IEEE Trans. Image Process., vol. 12, no. 10, pp. 1194–1210, 2003.

    無法下載圖示 全文公開日期 2015/06/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE