簡易檢索 / 詳目顯示

研究生: 胡孝先
Hsiao-Hsien Hu
論文名稱: 鎳鈮酸鉛基壓電陶瓷系統之低溫燒結行為與機制探討
Low Temperature Sintering Behavior and Mechanism of Pb(Ni0.33Nb0.67)O3-Based Piezo-Electric Ceramic System
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡明忠
Ming-Jong Tsai
黃育熙
Yu-Hsi Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 鎳鈮酸鉛基壓電陶瓷系統陶瓷共燒低溫燒結多層陶瓷元件
外文關鍵詞: Pb(Ni0.33Nb0.67)O3-based piezo-electric ceramic system, Co-fire process, Low temperature sintering, Multi-layer ceramic device
相關次數: 點閱:267下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要探討鎳鈮鈦鋯酸鉛壓電陶瓷系統的低溫燒結行為和材料特性。以鎳鈮鈦鋯酸鉛為主,進行材料內部的元素置換或添加助燒結劑,嘗試將材料系統的燒結溫度降低,並且觀察材料於低溫燒結的特性變化,探討特性變化的機制,並且選擇出適合應用於低溫陶瓷共燒的材料系統。
目前對於製作多層壓電陶瓷元件而言,主要面臨的問題為壓電陶瓷系統燒結溫度過高,在與銀內電極進行共燒的過程中會導致銀電極擴散,使多層壓電陶瓷元件無法使用。以燒結條件而言,銀的熔點為961.8℃,但是在高於900℃的環境下即會發生嚴重的擴散現象,因此必須將壓電陶瓷的燒結溫度降低至900℃以下,使陶瓷共燒可行,同時必須保有良好的材料特性。
由在900℃燒結時的相對密度與材料特性可以得知,將0.5Pb(Ni0.33Nb0.67)O3-0.5Pb(Zr0.3Ti0.7)O3(0.5PNNZT)壓電陶瓷系統改質為0.5Pb(Ni0.33(Nb(1-x)V(x))0.67)O3-0.5Pb(Zr0.3Ti0.7)O3(PNNVZT),利用V2O5做為起始配製粉末,可以將其相對密度提升至96.2%,惟其壓電常數(d33)僅為93pC/N,由XRD分析可以得知,釩在材料內部存在著多種價數,並導致大量二次相的產生,導致材料特性無法有效提升。
0.5PNNZT添加0~0.9 wt% Li2CO3於900℃進行燒結,在施以傳統燒結的情況下,當添加量為0.6 wt%時可以得到最理想的相對密度96.30%,同時其壓電常數(d33)為493pC/N,機電耦合因子(kp)為0.4769,由晶格常數的變化可以得知,添加Li2CO3可以協助材料於低溫進行液相燒結,提高材料密度與特性,此外,Li+固溶入了鈣鈦礦晶格之中,減少了材料內非鈣鈦礦結構的產生,保有了良好的材料特性,此外,本研究亦使用0.5PNNZT添加0.6wt% Li2CO3於900℃施以微波燒結,進一步將其相對密度提升至97.40%,壓電常數(d33)為542pC/N,機電耦合因子(kp)為0.5388。
綜合以上的成果,以0.5PNNZT添加0.6wt% Li2CO3為基材,以刮刀成形法製備多層陶瓷元件,多層陶瓷薄帶與銀電極於900℃進行微波燒結,由EDS分析可以得知,多層陶瓷元件內並沒有發生明顯的銀擴散現象,其壓電常數(d33)為382pC/N,較塊材有所下降,在施以40kV/cm (200V)的電壓可達到0.14%的應變量,相同厚度的塊材若須達到此應變量需要施以超過1000V的電壓。


In this research, we investigate the low temperature sintering behavior and material properties of 0.5Pb(Ni0.33Nb0.67)O3-0.5Pb(Zr0.3Ti0.7)O3(0.5PNNZT). Choosing 0.5PNNZT as the basic material system, we try to reduce the sintering temperature of the material system by element substitution and/or adding sintering aid. Observing variation of the properties of the material and discussing the mechanism, we select the material system suitable for low temperature co-fire sintering process.
The main problem for producing multi-layer device is that the sintering temperature for piezo ceramic is too high. When we apply co-fire process, the inner electrode, sliver, diffuses seriously when it is sintered at high temperature. We need to reduce the sintering temperature of the material system to 900℃ or lower and then the co-fire process is feasible.
It is known from the relative density and material properties when sintered at 900℃, 0.5PNNZT modified to 0.5Pb(Ni0.33(Nb(1-x)V(x))0.67)O3-0.5Pb(Zr0.3Ti0.7)O3 (PNNVZT) show good relative density. The properties are not enhanced because Vanadium ion shows different valence charge and form different kinds of secondary phases in material.
The relative density is 96.30% and piezoelectric constant d33 is 493pC/N when 0.5PNNZT is added 0.6wt% Li2CO3 and applied conventional sintering at 900℃. It is known from the change of lattice parameter that Li+ replaces the ions in perovskite lattice and avoid forming secondary phases. Beside, this research apply microwave sintering to 0.5PNNZT with 0.6wt% Li2CO3. The relative density is increased to 97.40%, piezoelectric constant d33 is 542pC/N, electromechanical coupling coefficient kp is 0.5833.
0.5PNNZT with 0.6wt% Li2CO3 is applied tape casting process to produce multi-layer ceramic device. When it is sintered at 900℃ with sliver electrode, it is known from the EDS that there is no silver diffusion in the multi-layer structure. The piezoelectric constant d33 of multi-layer ceramic is lower than bulk material, but it can decrease the driving voltage to achieve the same displacement.

目錄 摘要 I Abstract III 圖目錄 VII 表目錄 X 第一章 序論 1 第二章 文獻回顧與基礎理論 3 2-1 壓電材料系統 3 2-2 含鉛壓電陶瓷材料 4 2-3 Pb(Ni0.33Nb0.67)O3-Pb(ZrTi)O3壓電陶瓷系統 4 2-4助燒結劑 7 2-5微波燒結 9 2-5-1微波與材料的交互作用 10 2-5-2燒結理論 12 2-6多層陶瓷結構(Multi-Layer Ceramic) 16 第三章 實驗方法及材料特性的分析 19 3-1實驗藥品規格 19 3-2實驗儀器規格 20 3-3實驗流程與基礎特性量測 21 3-3-1實驗步驟 21 3-3-2粉末製備 21 3-3-3造粒 22 3-3-4成型 22 3-3-5燒結 22 3-3-6電極與極化處理 24 3-3-7基本性質量測與觀察 25 3-4電性量測 26 3-4-1極化值與電場(P-E)曲線量測 26 3-4-2壓電常數(d33)量測 26 3-4-3位移量與電場(S-E)曲線量測 27 3-4-4介電常數對溫度(ε-T)曲線量測 27 3-4-6壓電特性量測 28 第四章 結果與討論 29 4-1鎳鈮鈦鋯酸鉛陶瓷特性之研究 29 4-2 0.5Pb(Ni0.33(Nb(1-x)V(x))0.67)O3-0.5Pb(Zr0.3Ti0.7)O3系統開發與研究 32 4-3傳統燒結製程下添加Li2CO3對鎳鈮鈦鋯酸鉛陶瓷之影響 37 4-3-1 0.5PNNZT添加Li2CO3之密度與壓電特性量測 38 4-3-2 0.5PNNZT添加Li2CO3之XRD與微觀結構分析 42 4-3-3 0.5PNNZT添加Li2CO3之升溫介電與P-E、S-E分析 46 4-4微波燒結製程下添加Li2CO3對鎳鈮鈦鋯酸鉛陶瓷之影響 51 4-4-1 相對密度與壓電特性量測 53 4-4-2 微觀結構與P-E hysteresis loop分析 56 4-5 0.5PNNZT多層陶瓷元件 62 4-5-1 0.5PNNZT多層陶瓷元件製程 62 4-5-2 0.5PNNZT多層陶瓷元件結構與特性分析 66 第五章 結論 70 參考文獻 72 附錄一 3D列印壓電噴頭開發 77 附錄二 少鉛壓電陶瓷Pb(Ni0.33Nb0.67)O3-Pb(ZrTi)O3-((Bi0.5Na0.5)0.93Ba0.07)TiO3系統開發 85

參考文獻
1. W. H. Sutton, Microwave Processing of Ceramics an Overview, Microwave Processing of materials III, Mater. Res. Soc. Symp, Proc., Vol. 269, pp. 3-20, 1992.
2. 吳朗,電子陶瓷-介電,全欣科技圖書, 1994.
3. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons,Inc., New York, 2003.
4. Masao Kondo and Kazuaki Kurihara, Fujitsu Laboratories, Ltd., Atsugi 243-0197, Japan, 2001.
5. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, Morphotropic Phase Boundary in PbMg1/3Nb2/3O3–PbTiO3 System, Mater. Lett., 8 [6,7] 253–55 , 1989.
6. Y. Yamashita, Large Electromechanical Coupling Factors in Perovskite Binary Material System, Jpn. J. Appl. Phys., 33 [9B] 5328–31, 1994.
7. E. A. Buyanova, P. L. Strelets, I. A. Serova, and V. A. Isupov, Ferroelectric Properties of PbNi1/3Nb2/3O3‧PbTiO3‧PbZrO3 Solid Solutions, Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.), 29, 1877–80, 1965.
8. J. H. Moon and H. M. Jang, Effect of Sintering Atmosphere on Densification Behavior and Piezoelectric Properties of PbNi1/3Nb2/3O3–PbTiO3–PbZrO3 Ceramics, J. Am. Ceram. Soc., 76 [2] 549–52, 1993.
9. H. Banno, T. Tsunooka and I. Shimano, Proc. 1st Meet. Ferroelectric Materials and Their Applications, Kyoto(Keihin Printing, Tokyo, 1997)p. 399, 1997.
10. D.Luff, R. Lane, K. R. Brown and H. J. Marshallsay, Trans. J. Br. Ceram. Soc. 73(1974) 251, 1974.
11. Masao Kondo, Masaharu Hida, Mineharu Tsukada, Kazuaki Kurihara and Nobuo Kamehara, Piezoelectric Properties of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 Ceramic, Jpn. J. Appl. Vol. 36(1997) pp. 6043~6045. Part1, No. 9B, September 1997.
12. Sandeep Mahajan, Chandra Prakash, O.P. Thakur, Piezoelectric properties of 0.5(PbNi1/3Nb2/3)O3–0.5Pb(Zr0.32Ti0.68)O3 ceramics prepared by solid state reaction and mechanochemical activation-assisted method, Elelctroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110054, India, 2009.
13. E.A. Buyanova, P.L. Strelets, I.A. Serova, V.A. Isupov, Bull. Acad. Sci. USSR Phys. Ser. 29 (1965) 1877, 1965.
14. X.X Wang, K Murakami, O Sugiyama, Shoji Kaneko, Piezoelectric Properties, Densification Behavior and Microstructural Evolution of Low Temperature Sintered PZT Ceramics with Sintering Aids, Journal of the European Ceramic Society 21(10): 1367-1370 , December 2001.
15. In-Tae Seo, Tae-Gon Lee, Dae-Hyeon Kim, Joon Hur, Jong-Hyun Kim, Sahn Nahm, Jungho Ryu, Byung-Yul Choi, Multilayer piezoelectric haptic actuator with CuO-modified PZT-PZNN ceramics, Sensors and Actuators A: Physical, Volume 238, Pages 71-79, February 2016.
16. D.L Corker, R.W Whatmore, E Ringgaard, W.W Wolny, Liquid-phase sintering of PZT ceramics, Journal of the European Ceramic Society, Volume 20, Issue 12, Pages 2039-2045, November 2000.
17. Yeongho Jeong, Juhyun Yoo, Sangho Lee, Jaeil Hong, Piezoelectric characteristics of low temperature sintering Pb(Mn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zr0.50Ti0.50)O3 according to the addition of CuO and Fe2O3, Sensors and Actuators A: Physical, Volume 135, Issue 1, 30, Pages 215-219, March 2007.
18. Gao Feng, Hong Rongzi, Liu Jiaji, Li Zhen, Tian Chang-sheng, Effects of ZnO/Li2O codoping on microstructure and piezoelectric properties of low-temperature sintered PMN–PNN–PZT ceramics, Ceramics International, Volume 35, Issue 5, Pages 1863-1869, July 2009.
19. Kosuke Shiratsuyu, Koichi Hayashi, Akira Ando and Yukio Sakabe, Piezoelectric Characterization of Low-Temperature-Fired Pb(Zr, Ti)O3–Pb(Ni, Nb)O3 Ceramics, Japanese Journal of Applied Physics, Volume 39, Part 1, Number 9B, Jun 2000
20. Tae Hee Shin, Jong-Yoon Ha, Hyun-Cheol Song, Seok-Jin Yoon, Hyung-Ho Park, Ji-Won Choi, Piezoelectric properties of highly densified 0.01Pb(Mg1/2W1/2)O3–0.41Pb(Ni1/3Nb2/3)O3–0.35PbTiO3–0.23PbZrO3+0.1 wt% Y2O3+1.5 wt% ZnO thick films on alumina substrate, Ceramics International, Volume 39
21. Jong-Yoon Ha, Ji-Won Choi, Chong-Yun Kang, Doo Jin Choi, Hyun-Jai Kim, Seok-Jin Yoon, Effects of ZnO on piezoelectric properties of 0.01PMW–0.41PNN–0.35PT–0.23PZ ceramics, Materials Chemistry and Physics, Volume 90, Issues 2–3, Pages 396-400, 15 April 2005.
22. L. Amarande, C. Miclea, C. Tanasoiu, Effect of excess PbO on the structure and piezoelectric properties of Bi-modified PbTiO3 ceramics, Journal of the European Ceramic Society, Volume 22, Issue 8, Pages 1269-1275, August 2002.
23. G. Zhilun, L. Longtu, G. Suhua, and Z. Xiaowen, Low-Temperature Sintering of Lead-Based Piezoelectric Ceramics, J. Am. Ceram. Soc., 72 [3] 486–91, 1989.
24. J. H. Moon, H. M. Jang, and B. D. You, “Densification Behavior and Piezoelectric Properties of MnO2, SiO2-doped PbNi1/3Nb2/3O3–PbTiO3–PbZrO3 Ceramics,” J. Mater. Res., 8 [12] 3184–91, 1993.
25. Takashi Hayashi, Jun Tomizawa, Tomoyuki Hasegawa, Yoshikazu Akiyama, Low-temperature fabrication of Pb(Ni1/3Nb2/3)O3–Pb(Zr0.3Ti0.7)O3 ceramics with LiBiO2 as a sintering aid, Journal of the European Ceramic Society 24, 2004.
26. G.F. Fan, M.B. Shi, W.Z. Lu, Y.Q. Wang, Fei Liang, Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics, Journal of the European Ceramic Society, 2014.
27. Hou Y-D, Chang L-M, Zhu M-K, et al. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the lowtemperature sintered 0.5PZN-0.5PZT systems. Jpn J Appl Phys 2007;102: 084507–88462, 2007.
28. Hou YD, Zhu MK, Wang H, et al. Effects of atmospheric powder on microstructure and piezoelectric properties of PMZN-PZT quaternary ceramics. J Eur Ceram Soc 2004;24:3731–7.
29. W. H. Sutton, “Microwave Processing of Ceramics Materials”, Am. Ceram. Soc. Bull., Vol. 68, pp. 376-386, 1989.
30. K. E. Haque,” Microwave energy for minerial treatment processes –a brief review,” Int. J. Miner. Proc., Vol. 57, pp. 1-24, 1999.
31. E. Siores and D. Do Rego,” Microwave applications in materials joining,” J. Mater. Proc. Tech., Vol. 48, pp. 619-625, 1995.
32. P. Boch and N. Lequeux,” Do microwave increase the sinterability of ceramics” Solid State Ionics, Vol. 101-103, pp. 1229-1233, 1997.
33. M. A. Janney, H. D. Kimrey, M. A. Schmidt and J. O. Kiggans,” Grain growth in microwave-Annealed Alumina”, J. Amer. Ceram. Soc., Vol. 74, No. 7, pp. 1675-1681, 1991.
34. T. Saji,” Densification behavior of microwave sintering, and effects of green body pore size on it,” Proceedings of the International symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials, 3-4 February, 1997, Osaka, Japan, pp.9-19, 1997.
35. R. M. German, Sintering theory and practice, John Wiley & Sons, INC., New York, 1996.
36. H.Kanai, O.Furukukawa ,S.Nakamura, Y. Yamashita: J.Am.Ceram.Soc. 78(1995) 1657, 1995.
37. WenHis Lee, Chi-Yi Su, Ying Chieh Lee, Jackey Yang, Tong Yang, Shih PinLin, Effect of Inner Electrode on Reliability of (Zn,Mg)TiO3-Based Multilayer Ceramic Capacitor, Copyright (c) 2006, The Japan Society of Applied Physics Japanese Journal of Applied Physics, Volume 45, Part 1, Number 7, 7 July 2006.
38. J. S. Reed, Principles of ceramics processing Second Edition, John Wiley & Sons, INC., New York, 1994.
39. T. Kamiya, T. Suzuki, T. Tsurumi, “Effects of Manganese Addition on Piezoelectric Properties of Pb(Zr0.5Ti0.5)O3”, Jpn. J. Appl. Phys. Vol. 31, pp.3058-3060, 1992.
40. S. L. Swartz and T. R. Shrout, “Fabrication of perovskite Lead Magnesium Niobate,” Mater. Res. Bull., Vol. 17, pp. 1245-1250, 1982.

QR CODE